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Abstract—Network packet traces are critical for security tasks
which includes longitudinal traffic analysis, system testing, and
future workload forecasting. However, storing these traces over
extended periods is costly and subject to compliance constraints.
Deep Generative Compression (DGC) offers a solution by gen-
erating inexact but structurally accurate synthetic traces that
preserve essential features without storing full sensitive data.
This paper examines key research questions on the feasibility,
cost-competitiveness, and scalability of DGC for large-scale,
real-world network environments. We investigate the types of
applications that benefit from DGC and design a framework to
reliably operate for them. Our initial evaluation indicates that
DGC can be an alternative to standard storage techniques (such
as gzip or sampling) while meeting regulatory needs and resource
limits. We further discuss open challenges and future directions,
such as improving efficiency in streaming operations, optimizing
model scalability, and addressing privacy risks in this scenario.

I. INTRODUCTION

Network packet traces play a critical role in enabling secu-
rity operators to conduct a wide range of longitudinal security-
related tasks. These tasks include, but are not limited to, traffic
analysis for anomaly detection and network monitoring [1],
[2], testing and evaluating defense systems to ensure their
robustness and effectiveness [3], [4], and training machine
learning models for intrusion detection, traffic classification,
and adversarial resilience [5], [6], [7]. Given the increasing
complexity and volume of modern network environments, it
becomes essential to store longitudinal packet traces over
extended time periods.

However, a major challenge lies in the cost and compliance
constraints associated with storing longitudinal packet traces.
The high volume [8], [9] of packet-level data generated
by modern networks makes long-term storage expensive in
terms of infrastructure and maintenance. Moreover, regulatory
requirements, such as data retention policies and privacy laws
(e.g., GDPR or HIPAA), impose limits on how long data can
be stored and how it must be managed [10], [11], [12], [13],
[14], [15], [16]. This creates a trade-off for security operators

between retaining critical data for analysis and meeting cost
and compliance obligations.

Deep Generative Compression (DGC) offers a promising
solution to the storage challenges of longitudinal network
traces by leveraging domain-specific deep generative models.
Many use cases, such as longitudinal traffic analysis and
machine learning model training, do not require exact replay
of packet traces but instead benefit from structurally accurate
reconstructions [17], [18], [19]. This structural capture can
help bypass compliance and liability concerns associated with
retaining sensitive data while still preserving key statistical
and behavioral properties [19], [20]. Additionally, DGC has
the potential to significantly reduce storage costs (e.g., through
pretraining, parameter-efficient fine tuning, compression tech-
niques, etc.) by generating inexact yet realistic synthetic traces
that maintain utility for downstream tasks.

We envision that Deep Generative Models (DGMs) can be
an alternative to state-of-the-art storage options (e.g., gzip [21],
sampling [22], sketch-based methods [23], [24]). The end-
to-end workflow consists of two parts: 1) One-time offline
process: Given a series of models and specific downstream
tasks, use sampled data to create a customized workflow that
includes the selected model, its configurations, and the pre-
trained base model. 2) Online runtime system: Utilizing the
base model from the offline process, the online system will
continuously fine-tune on the incoming streaming data and
compress the traces periodically. Moreover, the system will
proactively monitor the data/model drift and determine the
right timing to fine-tune or retrain in addition to the periodic
fine-tuning.

This work explores initial answers to several research ques-
tions regarding the feasibility and effectiveness of DGC for
longitudinal network traces. Specifically:

• What kinds of applications can be supported by DGC?
This includes evaluating the utility of generated traces
real-world security-focus applications.

• Is DGC cost-competitive compared to traditional storage
approaches? We aim to analyze the trade-offs in terms
of storage reduction, computational overhead, and imple-
mentation costs.

• Does DGC scale well to large network trace? The study
takes an initial assessment to the scalability of DGC
methods when handling high-volume packet traces across
extended time periods.
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Early methods like DoppelGANger [25] and NetShare
[19] synthesize high-level flow statistics and packet head-
ers, balancing fidelity and privacy. Advanced methods, such
as NetDiffusion [17], [26], generate realistic packet-level
traces by capturing complex intra-packet and intra-flow de-
pendencies. Recent approaches using state space models [18]
and transformer-based architectures (e.g. REaLTabFormer [27]
and [28]) further improve fidelity and scalability, efficiently
handling sequential dependencies without requiring extensive
domain knowledge. However, one notable open challenge
still remains before DGC can see widespread use. The cost-
effectiveness of DGC methods, while promising, requires
further analysis. Computational overhead, model training time,
and deployment costs must be carefully weighed against the
benefits of storage reduction, particularly in large-scale and
resource-constrained settings.

Future work on DGC will focus on improving adaptability,
efficiency, and scalability for real-world applications. Cus-
tomizing models for specific environments and use cases will
enhance fidelity across diverse network conditions. Efficient
streaming operations, supported by pretraining, can enable
real-time trace generation with minimal overhead. Optimizing
learning processes and model storage will address resource
constraints, ensuring scalability. Finally, developing runtime
control systems for continuous training and evaluation will
allow DGC to adapt dynamically to evolving traffic patterns,
improving long-term effectiveness.

II. MOTIVATION

We first start with some use cases of long-term packet traces,
then discuss about the status quo of storage options and their
pain points.

A. Use cases for longitudinal packet traces

Beyond just-in-time monitoring and analysis for anomaly
detection, system health monitoring, performance analysis and
provisioning, troubleshooting, security and network operators
often need to store long-term network traces for more so-
phisticated tasks and applications that require temporal or
longitudinal perspectives. We discuss a few illustrative use
cases of long-term network traces.
Use case #1: longitudinal traffic analysis [29], [30], [31].
Operators interested in the statistical properties of traffic over
longer timescales may collect a variety of statistical metrics
on a per-epoch basis, such as the number of packets, bytes,
different source-destination IP pairs, protocol distribution, and
so on, in each time window. However, reconstructing long-
term network traces often requires full packet traces due
to their richness, flexibility, and ability to capture cross-
layer correlations [19], [17]. Full traces provide detailed data,
enabling retrospective metric computation and adaptable anal-
yses, which helps to identify longitudinal trends that provide
insights into the system and workflow. Additionally, these
trends can help detect anomaly events when measurements
deviate significantly from expected patterns.

Use case #2: system testing and evaluation. Operators rely
on long-term packet traces for system testing and evaluation.
Companies regularly update their systems to refine firewall
rules or enhance performance. Before deploying these updates,
testing is required to ensure reliability (e.g., the system can
handle actual workloads without failure) and functionality.
Long-term packet traces are particularly valuable for testing
as they capture diverse real-world workload patterns, serving
as a reliable proxy for predicting future traffic characteristics.
For example, when updating an intrusion detection system
(IDS), long-term packet traces enable testing to ensure that
the new IDS can manage high traffic volumes over extended
periods without becoming a bottleneck and can effectively
detect previously observed intrusions.
Use case #3: future workload forecast. Accurately fore-
casting future workloads is critical for system and security
operators, as it aids in optimizing system deployment and
resource allocation. For instance, if network operators identify
that traffic trend is behaving abnormal due to implicit network
characteristic changes or user pattern shifts, they can allocate
or decrease resources accordingly [2]. This often requires
long-term trend patterns to establish a forecasting baseline.
There are lots of forecasting techniques been developed, like
Autoregressive Integrated Moving Average (ARIMA) [32],
[33], [34], [35], Seasonal Decomposition of Time Series (STL)
[36], Vector Autoregression (VAR) [37], [38], RNN/LSTM
[39], [40], [32], CNN [41], Autoencoder-based [42], and
transformer-based [43], [44], [45], [46], [47].

B. Challenges with Status Quo

Operators aiming to store long-term traces primarily face
two concerns:

• Storage Cost: The first concern is the cost of storing
long-term traces. With the increasing volume of network
traffic, modern networks generate a significant amount
of trace data [8]. Even small-scale university networks
produce an average of 1 to 2 TB of traffic per day
[48], [49], while data center networks and ISPs gen-
erate over 10 TB of daily traffic [50], [51], [52]. For
example, an ISP generating 10 TB of traces daily would
incur substantial storage expenses. Using standard storage
pricing on Google Cloud in North America, at $0.02
per GB per month [53], storing the traces for a year
would cost $2457.6 for a single day’s data and $897K
for a year’s data. Such expenses represent a significant
financial burden.

• Policy Compliance: The second concern relates to com-
pliance with retention and privacy policies. Many net-
works have restrictions that limit the duration for which
raw traces can be stored, often due to privacy regulations
(e.g., GDPR or HIPAA) or data governance policies [10],
[11], [12], [13], [14], [15], [16].

To address the high storage cost, operators commonly em-
ploy compression techniques such as gzip to reduce the storage
footprint of trace data. Our experiments indicate that gzip can
typically achieve a storage reduction of 50% ∼ 80% compared
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to raw traces. However, for further storage reduction, operators
often resort to trace sampling, storing only a subset of the data.
While sampling can save storage space, it is not suitable for
many use cases due to its inherent limitations. For instance,
in long-term trend analysis, sampled traces can only provide
limited statistical insights. If packets are randomly sampled
at a 10% rate, the total number of bytes in a minute can be
roughly estimated as ten times the sampled value. However,
more complex metrics, such as the number of distinct source IP
addresses in a minute, cannot be accurately extrapolated in the
same way, as they do not scale linearly with the sample rate.
Similarly, for stress testing updated systems, sampled traces
are inadequate, as they fail to replicate the actual workload’s
stress, thereby undermining the test’s validity.

To comply with policies and legal requirements, a common
approach taken by operators is the anonymization of trace
data [54], often achieved by techniques such as hashing to
anonymize IP fields in packet headers. However, the extent
of privacy provided by such methods remains uncertain, as
numerous de-anonymization attacks have been developed to
exploit vulnerabilities in these techniques [55], [56].

C. Our Goal

Based on the challenges and pain points faced by operators,
our objective is to design and implement a compression
framework that

• Capable of Online Processing. Our system is designed
to operate in an online setting, where packets arrive
continuously every second. It should efficiently handle
high volumes of incoming packets and compress them in
real time.

• Easy to deploy. Our system should run seamlessly and
achieve optimal compression results out of the box. It
must be fully automated, requiring no prior knowledge or
manual configuration from system or security operators.

• Cost-efficient. We want out system to achieve a higher
compression ratio and lower total cost compared to
general-purpose approaches like gzip.

• High data quality. Our system will aim to maintain
balanced fidelity-privacy trade-off, ensuring that the com-
pressed data is suitable for a wide range of downstream
applications without compromising functionality or ana-
lytical accuracy.

III. RESEARCH VISION

A. Deep Generative Opportunity

Deep generative models (DGMs) are a class of neural
networks designed to learn complex data distributions and
generate realistic samples. Prominent architectures include
Variational Autoencoders (VAEs) [57] and Generative Ad-
versarial Networks (GANs) [58]. More recently, transformer-
based generative models like GPT and its variants [59] have
emerged. DGMs have found widespread applications in data
synthesis and compression. By capturing intricate patterns in
high-dimensional data, they provide powerful tools for model-
ing and efficiently encoding structured data, which makes them

powerful tools to generate network packet traces. There are
lots of previous work using DGMs to generate network traces,
including DoppelGANger [25], NetShare [19], NetDiffusion
[17], [26], etc.

Additionally, DGMs have potential to compress data, since
it can find some patterns in raw data very efficiently. For
example, GPT-3 [59], one of the largest transformer model,
is trained from over 45TB of text data, but it captures the
structure and information of the extremely large training data
in only 350GB of parameters. Therefore, DGM would also be
able to compress network traces efficiently.

One important property of DGMs is they only capture the
structure, distribution and statistical information of original
training data, without trying to exactly mimic them. This
property is suitable for network packet trace storage, since
most of the long-term packet trace applications do not need the
exact replay of previous packets. For instance, if the operators
want to do some long-term trend analysis, the generated trace
would suffice if it preserves the statistical properties of the
actual trace. Additionally, the non-replay property enables
DGM to provide good privacy protection and compliance to
the policy and legal requirements.

Therefore, due to their efficient compression capability
and good fit to the long-term packet traces application and
policy requirements, we try to explore the capability of deep
generative compression for network packet traces, and build a
practical compression system using the DGMs.

B. System Overview

Following our design goals, the system design, illustrated in
Figure 1, consists of two distinct phases: the offline warm-up
phase and the online compression phase. Additionally, a model
library is maintained to store all trained models to date.

Phase 1: Offline Warm-up. This offline phase prepares the
system for its online operation. It processes historical packet
traces as input to train a DGM, which serves as the base model
( 1⃝). The trained model is then added to the model library
( 2⃝). Once the initial model library is established, the system
is ready for online operation.

Phase 2: Online Compression. During online operation,
packets arrive sequentially. Our system partitions these packets
into chunks, where each chunk consists of a group of adjacent
packets. For each chunk, the system aims to construct a
DGM capable of generating the corresponding network traces.
Specifically, the system first selects a previously trained model
from the model library ( 3⃝). It then fine-tunes this selected
model on the current chunk ( 4⃝) to produce a model tailored
to the specific packet trace of that chunk. Finally, the updated
model is added back to the model library ( 5⃝).

C. Technical Challenges

Developing a compression system that meets the needs of
operators involves several technical hurdles:

Fidelity modeling sufficiency: The system must preserve
sufficient fidelity for downstream applications. Different use
cases demand varying levels of detail, such as precise packet
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Fig. 1. Streaming system design.

arrival times, flow dynamics, or specific header fields. While
the literature evaluates fidelity using different statistical mea-
sures or downstream ML model performance [19], [17], [25],
they fail to capture some of the above domain-specific infor-
mation while balancing compression levels.

Coverage over use cases: A unified deep generative com-
pression framework need to accommodate a variety of tasks
that extend beyond immediate monitoring and anomaly detec-
tion. For instance, long-term traffic analysis requires faithful
reconstructions of diverse network metrics. However, system
testing and evaluation need realistic, large-scale packet cap-
tures to ensure compatability with networked hardware [26].
Each scenario poses unique data requirements, from packet-
level details to aggregated metrics, making it challenging to
design a single framework without frequent reconfiguration.
Meeting these demands requires a clear understanding of
application context.

Computation-storage cost trade-off: Training deep gen-
erative models for compression introduces computational ex-
penses, especially when applied to large-scale datasets. These
models require high-performance hardware and time [27],
[17], [25], [19]. The increased computational cost must be
justified by a corresponding reduction in storage costs achieved
through higher compression ratios, while ensuring minimal

computational overhead to maintain practicality and cost-
effectiveness for large-scale deployments.

Runtime efficiency: The design of a DGC framework
should be efficient to avoid computational bottlenecks in a
streaming system. High overhead or latency can undermine
usability, especially in real-time environments. DGMs must
carefully balance the chunking size of incoming data for each
training iteration to optimize this trade-off effectively.

Modeling privacy and risk: The traces produced by
DGMs are not inherently privacy-preserving, as these models
are susceptible to various attacks, including model inversion
attacks [60] and membership inference attacks [61]. While
some initial efforts have been made to enhance the privacy
of DGMs in network trace generation [19], [20], the broader
privacy implications and protections for long-term network
traces remain largely under-explored. This highlights the need
for further research to establish robust privacy-preserving
mechanisms for temporal and longitudinal information under
different application context.

IV. PRELIMINARY RESULTS AND FUTURE WORK

A. Early results

Experiment setup. For our early evaluation, we use the
CAIDA [62], an anonymous network packet traces collected
from the Equinix-Chicago monitor in 2018, for the task of
trace storage and compression. The experiments were con-
ducted using a single NVIDIA V100 GPU and leveraged
a state-of-the-art tabular-based network transformer model,
REalTabFormer [27] with a GPT-2 model of 3 transformer
layers, 4 attentio heads and embedding dimension of 128, for
the evaluation of the generated traces against real-world data.

Domain-specific fidelity. The generated network traces in
Table I are evaluated using the Jensen-Shannon Divergence
(JSD) across a collection of network-specific metrics that
reflect packet and flow characteristics. The results show that
a training size of 500K and 1M packets yields an average
JSD of 0.28 across 17 metrics, which remains steady at larger
training sizes. Metrics such as packet size and throughput
exhibit relatively low JSD values (0.12 and 0.09 for 500K,
respectively), while flow-level properties, including flow size
and flow duration, show higher divergence (0.38 and 0.42
for 500K). Notably, the JSD for flow start time (0.12 for
500K) indicates that the model captures some basic tem-
poral information effectively. However, the results for flow
size and flow duration suggest that the REalTabFormer [27]
architecture does not sufficiently condition on these aspects,
highlighting potential areas for improvement in modeling
temporal dependencies and flow-level dynamics. Compared to
prior studies that often rely on broader statistical measures
or downstream machine learning performance, this analysis
emphasizes the value of incorporating domain-specific metrics
when assessing the fidelity of synthetic traces.

Training scalability. The relationship between the compu-
tation cost, expressed as seconds per thousand packets (SPTP),
and fidelity is shown in the plot. SPTP serves as a proxy for
computational cost, directly indicating the time spent on GPU



TABLE I
DISTANCES (IN JSD) OF NETWORK-SPECIFIC METRICS BETWEEN REAL VS. GENERATED NETWORK TRACES.

Train. Size (#Packet) Packet Size Throughput Flow Size Flow Start Time Flow Duration Average of 17 Metrics

500K 0.12 0.09 0.38 0.12 0.42 0.28
1M 0.10 0.10 0.40 0.13 0.43 0.28

training time per thousand packets. As shown in Figure 2, the
results reveal that as the training set size increases, the model
achieves higher efficiency, with lower average JSD values at
comparable SPTP levels. Notably, smaller datasets (e.g., 50K
and 100K packets) exhibit slower convergence, requiring more
computation to reach fidelity levels similar to larger datasets.
For the 500K and 1M packet training sets, the model achieves
comparable fidelity (approximately 0.3 average JSD) after
around 20 seconds of computation, indicating that additional
computation time provides diminishing returns beyond this
point. This convergence suggests a computational bound at
higher dataset sizes, where increased data availability does not
significantly enhance fidelity metrics after a certain threshold.
These findings highlight the scalability of the model, where
larger training sets allow for faster and more efficient fidelity
improvements, up to the observed computational limits.
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Fig. 2. Average JSD v.s. SPTP. X axis represents the average GPU second
used by per thousand packets. Y axis represents the average of JSD on 17
different metrics between generated trace and original trace. Different color
of line represents different different number of packets in the original trace.

Storage. We evaluate the storage consumption of storing
raw CSV, using gzip and DGM. The result is shown in Figure
3. Notice that the storage cost grows linearly as number of
packets stored in both raw CSV and gzip-compressed CSV, but
the model size 3.19 MB remains constant since we are using
the same model configuration for different size of packets to be
compressed. This implies that as the dataset scales, the com-
pression efficiency of gzip diminishes, and when the number
of packets larger than 200K, using DGM can out beat gzip
on the storage cost. The constant model size demonstrates the
compactness of the trained model, which provides a significant
advantage in terms of long-term storage efficiency for large-
scale datasets. In the case of 1M packets, the raw trace takes
81.87 MB storage and the gzip-compressed trace takes 17.79
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Fig. 3. Storage consumption v.s. number of packets in the trace. X axis
represents number of packets in the trace, Y axis represents the amount of
storage space each approach consumes. Blue line represents storing the raw
trace; Orange line represents using gzip to compress the trace, and the green
line represents using DGM.

MB, which means using DGM can save 96% of storage space
compared to raw trace and 82% of storage space compared to
gzip compression. This observation emphasizes the potential
of significantly reducing storage cost using DGMs, especially
for long-term retention of large datasets.

B. Future Directions

This work sheds light on a series of promising future
directions:

• Model Selection and Hyperparameter Tuning. With
the rapid expansion of deep generative models (DGMs),
selecting and tuning the right model has become a critical
challenge. Balancing factors such as fidelity, cost, and
privacy requires careful experimentation. Additionally,
since DGMs are highly sensitive to hyperparameters,
integrating the system with auto-tuning frameworks (e.g.,
AutoGluon [63]) can enhance adaptability across diverse
use cases and workloads.

• Model System Optimizations (one time): We envision
that lots of out-of-the-box DGMs are not fully optimized
in terms of fidelity and cost. As a one-time offline
process, profiling and optimizing the system bottlenecks
can help improve the fidelity and bring down the cost at
the same time.

• Pretraining and finetuning (runtime): Pretraining [59],
[64] has proven to be the standard fashion for today’s
deep neural network. However, while some early efforts
have been made in developing foundational models in
the networking domain [8], [65], [66], developing a
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reasonably sized, high-quality base model and exploring
fine-tuning approaches (e.g., LoRA [67]) can significantly
advance networking applications.

• Continuous runtime profiling and adaptation (run-
time): Data and model drift [2] can degrade the model
performance in production environments. Continuous
runtime monitoring and adaptation through fine-tuning or
retraining can help ensure the fidelity of DGMs.
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