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Abstract—To improve the preparedness of Security Operation
Center (SOC), analysts may leverage provenance graphs to
deepen their understanding of existing cyberattacks. However,
the unknown nature of a cyberattack may result in a provenance
graph with incomplete details, thus limiting the comprehensive
knowledge of the cyberattack due to partial indicators. Fur-
thermore, using outdated provenance graphs imposes a limit on
the understanding of cyberattack trends. This negatively impacts
SOC operations that are responsible for detecting and responding
to threats and incidents. This paper introduces PROVCON,
a framework that constructs a provenance graph representa-
tive of a cyberattack. Based on documented cyberattacks, the
framework reproduces the cyberattack and generates the corre-
sponding data for attack analysis. The knowledge gained from
existing cyberattacks through the constructed provenance graph
is instrumental in enhancing the understanding and improving
decision-making in SOC. With the use of PROVCON, SOC can
improve its cybersecurity posture by aligning its operations based
on insights derived from documented observations.

I. INTRODUCTION

The critical operations in SOC require analysts to continu-
ously improve their understanding of cyberattack trends. To get
a clearer understanding of existing cyberattacks, analysts may
rely on provenance graphs to discover how an attack unfolded,
determine the affected systems, identify the compromised
data, and eventually pinpoint the incident’s root cause. This
enhances their understanding and ability to explain correlated
malicious activities that occurred during the cyberattack [57],
especially during threat hunting [31], [39] and event recon-
struction [11]. The reliance on the insights derived from
provenance graphs makes them vital in delivering a positive
impact towards SOC operations, such as training on realistic
attack scenarios, making informed decisions, and refining
Digital Forensics and Incident Response (DFIR) techniques.

Acquiring a comprehensive provenance graph that closely
reflects contemporary cyberattacks is pivotal in the context of
the SOC [18]. Relying on provenance graphs with incomplete
and outdated information will undermine its effectiveness in
providing valuable insights for SOC operations. One way

to address this challenge is to rely on existing cyberattack
datasets (e.g., logs, traces) to derive provenance graphs.
However, obtaining such datasets is challenging due to the
scarcity of real-world cyberattack data that may not be widely
shared due to privacy concerns. Despite utilizing the publicly
available cyberattack datasets, the provenance graph may be
incomplete as it does not contain comprehensive indicators
about the cyberattack. Furthermore, the insights drawn from
the provenance graph become obsolete as they are only rel-
evant for the period during which the cyberattack occurred
(e.g., attack techniques, software configurations). Using an
incomplete and outdated provenance graph may lead to a lack
of understanding about emerging and evolving cyberattack
activities. This raises the need for a provenance graph that
is representative of current cyberattacks.

To address the incomplete and outdated datasets that provide
limited value for attack understanding, we propose PROVCON,
a framework for constructing provenance graphs. We first
extract the latest cyberattack information from Cyber Threat
Intelligence (CTI) reports as primitives and collect them as a
specification. Based on the specification, we deploy the cyber-
attack within a cyber range and execute the attack activities
before extracting the data that consists of attack indicators.
The attack data is then transformed into a provenance graph,
which contains insights about the cyberattack. We highlight the
need to produce provenance graphs that contain comprehensive
attack information, as having this capability augments the
understanding about existing cyberattacks for SOC analysts.
In summary, our contributions are as follows:

• We propose a framework called PROVCON for construct-
ing provenance graphs that augment the understanding of
existing cyberattacks in SOC.

• We conduct a case study to demonstrate the usefulness
of PROVCON in constructing complete and timely prove-
nance graphs that enhance the understanding of existing
cyberattacks.

• We publicly share the repository1 that contains the prove-
nance graph and corresponding data constructed using
PROVCON.
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TABLE I: Summary of existing public datasets.

Dataset Release Date Collector
Papers that Heterogeneous Heterogeneous Up-to-date Completeness of Event-level

use the dataset Data Hosts Attacks Indicators Ground Truth

StreamSpot [34] 2016 SystemTap [28] [13], [23]–[25], [29], [52], [54] ✘ ✘ ✘ ✘ ✘

DARPA E3 [1] 2018 Auditd [46], DTrace [4],
ETW [17]

[8], [13], [18], [19], [23]–[27],
[29], [32], [39], [41], [44],

[52]–[56]
✘ ✔ ✘ ✘ ✘

DARPA E5 [3] 2020 Auditd, DTrace, ETW [13], [15], [27], [44] ✘ ✔ ✘ ✘ ✘

DARPA OpTC [2] 2020 Auditd, DTrace, ETW [52] ✘ ✔ ✘ ✘ ✘

UNICORN [25] 2020 CamFlow [45] [25], [29], [52] ✘ ✘ ✘ ✘ ✘

ATLAS [7] 2021 Windows Security Auditing [38],
Mozilla Firefox [43] [7], [16], [24], [48], [54] ✔ ✘ ✘ ✔ ✔

NodLink [32] 2024 Sysdig [50], ETW [32] ✘ ✔ ✘ ✔ ✔

TREC [40] 2024 Kellect [12] [40] ✘ ✘ ✘ ✔ ✘

II. BACKGROUND

To construct provenance graphs that are relevant for SOC
operations, we need to identify the features that make a prove-
nance graph effective in capturing comprehensive and up-to-
date indicators. Understanding existing datasets and gathering
requirements is key to constructing provenance graphs appli-
cable to attack analysis. This section provides a comprehensive
study of public datasets used by provenance analysis papers
published at the top conferences during 2019-2024, including
IEEE S&P, USENIX Security, CCS, and NDSS. We carefully
read these papers and summarized the public datasets that
they used for their evaluations. Finally, we found eight public
datasets that are widely used by the research community.
We summarize these datasets and analyze them from five
perspectives: heterogeneity of data, heterogeneity of hosts,
up-to-date attacks, completeness of indicators, and event-level
ground truth. The results are shown in Table I.
Heterogeneous Data. Existing datasets are mainly provenance
audit data from each host respectively. However, existing
attacks often exploit multiple hosts in a network and laterally
move to the target to achieve their malicious purposes [9].
Therefore, network traffic is also important to capture the
whole attack campaign. In addition, different detection meth-
ods may require different types of data. For example, attackers
often use stealthy techniques to manipulate the memory of
compromised processes. So, the memory dump of the com-
promised hosts is also useful for detecting malicious activities.
Therefore, provenance data from separate hosts is insufficient
to capture and analyze real-world attack campaigns as a whole.
In our study, only ATLAS [7] provides heterogeneous data
containing DNS logs and Web browser traffic. So, we observe
the need to provide heterogeneous data for provenance analysis
research.
Heterogeneous Hosts. In real-world scenarios, there are dif-
ferent operating systems in SOC, such as Windows, Ubuntu,
FreeBSD and MacOS. The attackers will use different attack
techniques or tools based on the host’s operating systems
to achieve their malicious purposes. For example, attackers
often use Cobalt Strike [22] to control Windows hosts and
Metasploit [37] to penetrate Linux hosts. Hence, it is important
to provide provenance data from different operating systems

1https://github.com/NUS-Curiosity/provcon

to evaluate the generalizability of the proposed methods.
However, only half of the datasets provide provenance data
from different operating systems.

Up-to-date Attacks. One characteristic of Advanced Persis-
tent Threats (APT) attacks is that the attackers will use zero-
day vulnerabilities or the latest attack techniques to evade
detection from security tools used by the victims. Therefore,
the datasets should contain the latest attack techniques for
evaluation. However, all of the datasets use out-of-date at-
tacks, such as CVEs that are released four years before the
dataset release date [7] and the scripts from the Atomic Red
Team [32], [40], [51]. However, utilizing the latest attacks
for evaluation requires a lot of manual effort with respect to
setting up testbeds and collecting data. Thus, an automated
way to generate the datasets with the latest attacks will be
helpful.

Completeness of Indicators. In SOC, the detection and inves-
tigation of APT attacks often require complete indicators of
these attacks, such as the command line of the malicious pro-
cesses, malicious files, and malicious IP addresses. However,
some commonly used public datasets do not contain complete
indicators of the attacks. For instance, the StreamSpot [34]
dataset retains only the graph structure of the provenance
data, omitting specific details of the nodes and edges. This
incompleteness complicates the evaluation using methods that
rely on complete attack indicators. DARPA E3 [1] and DARPA
E5 [3] provide a list of indicators in their documents, but some
of these indicators cannot be found in the provenance data.
Therefore, it is necessary to provide complete indicators of
cyberattacks in the datasets to support all types of provenance
analysis methods.

Event-level Ground Truth. The ground truth of datasets is
important for the evaluation of the detection system in SOC.
Some datasets, such as StreamSpot [34] and Unicorn [25]
only label the anomaly in graph-level granularity, which makes
it difficult to evaluate the event-level accuracy. The DARPA
E3 [1] and DARPA E5 [3] provide documents that describe the
attack scenarios and the indicators of the attacks, but it takes
a lot of manual effort to label the ground truth in the datasets.
In SOC, analysts often need to investigate malicious activities
in event-level granularity to understand the attack campaigns
and take action [18]. Event-level ground truth is necessary for
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the evaluation of Provenance-Based Endpoint Detection and
Response (P-EDR).
Limitations. Based on these observations, we find that the ex-
isting public datasets have limitations at least in two of the five
perspectives. For example, DARPA E3 [1] and StreamSpot [3]
are the most widely used datasets, but they cannot simulate the
APT attacks well and require a lot of manual effort to evaluate
them. Some researchers have claimed that DARPA E3 is not
suitable for evaluating their proposed methods [7], [40], [44]
thus they need to collect and build their own datasets. How-
ever, most of the simulated datasets are not publicly available,
which makes it difficult for other researchers to reproduce
the results. In addition, Deep Nerual Network (DNN), Graph
Neural Network (GNN), and Large Language Model (LLM)
are widely used by existing P-EDR. The data quality is crucial
for the performance of these models. Therefore, improving
the quality of public datasets is necessary for the research
community to develop and evaluate the P-EDR.
Requirements. To address these limitations, we summarize
the requirements for public datasets used in provenance anal-
ysis research. First, the datasets should contain heterogeneous
data so that it is supported for different downstream tasks.
Second, the datasets should contain provenance data from
different operating systems and mimic the latest attacks to
evaluate their effectiveness and generalizability. Third, the
datasets should contain complete indicators of attacks and
event-level ground truth for model training and the calcula-
tion of performance metrics. These requirements ensure that
the provenance graph generates high-quality insights that are
useful for attack investigation.

To satisfy these requirements, we propose a framework to
construct provenance graphs from the latest CTI reports. The
framework extracts the necessary attack information from the
latest CTI reports and provisions a cyber range on a testbed to
simulate the attack before collecting the heterogeneous data.
The details of PROVCON are described in the next section.

III. METHODOLOGY

To generate a provenance graph that contains complete
indicators and acts as a representation of current cyberattacks,
we propose a framework called PROVCON. The framework
identifies relevant cyberattack information from CTI reports
and constructs a provenance graph corresponding to the cy-
berattack information, as described in Figure 1. Specifically,
our framework first analyzes CTI reports as the input to
PROVCON. The analysis focuses on recognizing cyberattack
primitives that are relevant for generating a provenance graph.
The primitives are then transformed into a cyberattack descrip-
tion that formalizes the primitives into technical requirements.
These technical requirements are then used as a specification
to reproduce the cyberattack by deploying a cyber range.
The cyber range replicates the components and executes the
attack events in a controlled environment. At the end of
the execution, relevant data are extracted from the respective
hosts involved in the cyber range. This includes a variety
of logs that contain key details found in the cyberattack.

The logs are finally transformed into a provenance graph,
which is used for attack investigation within SOC. To ease
the investigation process, the extracted data are annotated
based on the description used for cyberattack reproduction.
By using PROVCON, the constructed provenance graph is
enriched with indicators that are described in the CTI report
while simultaneously having the data annotated based on the
formalized cyberattack description.

A. Cyberattack Primitives Recognition

Selecting a CTI report that contains recent cyberattacks
allows PROVCON to construct provenance graphs that are
relevant to current trends. CTI reports contain descriptions
about APT attacks and are used as input for PROVCON. The
objective of this component is to parse the CTI report and
identify relevant cyberattack information for constructing the
cyber range. This component is segregated into two stages.
The first stage is to identify the cyberattack primitives that are
relevant for constructing a provenance graph. This includes
primitives that describe the infrastructure, tools, malware, indi-
cators, and attack patterns that are involved in the cyberattack.
Certain primitives are directly related to the provenance graph.
This includes the tools and malware that are being used during
the attack, attack patterns that indicate the malicious activities
taken by the threat actors, and possible indicators that are
observed. There are also primitives that are indirectly related to
the provenance graph but are necessary for provenance graph
construction. This includes infrastructure information such as
database server and Command and Control (C2) server. These
indirect primitives are required to derive the information found
in the provenance graph. In the second stage, the identified
cyberattack primitives are categorized into two groups, namely
environment and events. The environment category contains all
the primitives that are used to build the cyber range (e.g.,
software, operating systems, hosts, network configuration).
The events category contains all the primitives that are used
to form the sequence of events (e.g., benign operations, attack
sequences). This categorization forms the fundamentals of
cyberattack reproduction.

The categorized primitives are used to compose the cyber-
attack description. The cyberattack description specifies the
instances that are involved in the cyberattack (e.g., Windows
clients, Linux-based database server). Additionally, the cyber-
attack description specifies the artifacts that are involved in
every instance, such as tools and applications. These artifacts
may include vulnerable components that can be exploited
during the attack. Network configurations (e.g., IP addresses,
subnet) are also defined in the cyberattack description in order
to provide network connectivity between the instances. Aside
from the environment-related description, the cyberattack de-
scription also specifies the events that take place throughout
the cyber range. These events may include benign or mali-
cious activities that occur in the environment. Therefore, the
cyberattack description is designed to capture customizable
and complex cyberattack scenarios which include heteroge-
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Fig. 1: Framework of PROVCON.

neous instances, applications, varying networking topology,
and events.

B. Provision and Deployment

The cyberattack description is written in a structured and
high-level custom Domain Specific Language (DSL), which
provides an environment-level perspective of the cyber range
written as code. Our custom language is designed to declar-
atively describe the environment and event information in
a single language while being directly translatable to the
underlying Infrastructure as Code (IaC). As an alternative,
the cyberattack description can also be written directly as
IaC for deployment. In PROVCON, we devise the cyberattack
description using our custom DSL which is then translated
to the corresponding underlying IaC (i.e., Vagrant and An-
sible). We utilize Vagrant as a declarative and reproducible
mechanism to realize the environment components in the
cyber range. Additionally, Ansible is used as a configuration
and orchestration tool to configure the deployed environment
components and orchestrate the cyberattack activities inside
the cyber range.

With the goal of realizing a cyber range in this component,
the technical requirements defined in the cyberattack descrip-
tion are first translated to the respective IaC. The framework
then iterates through each component and provisions the
defined resources. This includes preparing the necessary ap-
plications, setting up the configurations, and retrieving virtual
images for deployment. During deployment, the framework
realizes the provisioned resources on our test bed. This in-
cludes the deployment of configured virtual instances and
networking nodes along with their network configurations.
Additionally, monitoring tools are configured and activated
in every instance. This allows the monitoring of system-level
and network-level activities, thus generating relevant logs that
consist of indicators resulting from attack activities. As a
result, this creates the initial state of the cyber range with
all the necessary components for replicating the cyberattack.

Once the environment is ready, the framework iterates
through the list of events and orchestrates the execution of
activities throughout the cyber range. In every event, the
artifacts (e.g., applications, tools, malware) are executed in
the respective instance. Sequential execution of events ensures
that the attack steps are controlled throughout the cyber range.
Cyberattack reproduction is considered a success when all
events have been executed successfully in the cyber range.

C. Forensic Data Extraction

After the cyberattack is reproduced, the cyber range contains
data that is useful for analysis. The goal is to extract the nec-
essary data, especially data that are relevant for constructing a
provenance graph. In PROVCON, we extract system-level logs
from the respective instances in the cyber range. The logs are
generated by the monitoring tools that capture the activities
that occur after the initial environment state. For Windows-
based instances, we utilize the Windows Event Viewer, which
captures both application and system messages. This includes
application, system, and security logs that describe the events
that occurred in the Windows-based instance. In addition to the
default logging service in Windows, PROVCON uses System
Monitor (Sysmon) as a supplementary monitoring tool to
perform detailed logging of events that are not captured by the
default logging service. Sysmon enhances the default logging
capabilities in Windows Event Viewer by providing detailed
visibility on processes (e.g., current and parent process ID),
files (e.g., file creation timestamp), and network connections
(e.g., IP address and port numbers). For Windows-based
instances, the logs are extracted as Windows XML Event
Log (EVTX) files. The EVTX format preserves the event
information and its metadata, maintaining compatibility with
various forensic analysis tools.

For Linux-based instances, we export all the generated logs
located in the default log directory at /var/log. This direc-
tory includes various logs such as system logs, authentication
logs, and application logs. In addition to the default logging
in Linux, we utilize two additional monitoring tools, namely
Linux Audit Daemon (auditd) and sysdig2. The goal of auditd
is to monitor and record the responsible user and process
for an event (e.g., identify user accessing a sensitive file),
thus achieving audit-level capabilities. Additionally, sysdig
focuses on capturing detailed system and application activities.
The deep system-level visibility enables the identification and
explanation of suspicious activities. To preserve the contents of
the logs, all logs in /var/log are exported in their original
format. This includes both auditd and sysdig logs (i.e., SCAP
file).

In addition to system-level logs, we extract network-level
logs from the respective instances. To monitor and capture net-
work logs, we utilize Packet Monitor (Pktmon) for Windows-
based instances and tcpdump for Linux-based instances.
These network monitoring tools monitor and record the net-
work communication from the instance’s network interfaces,

2https://github.com/draios/sysdig
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thus capturing network-level information during the course of
events (e.g., source and destination IP addresses of packets).
The network capture for every instance is extracted as a
Packet Capture (PCAP) file, preserving the bytes observed
on the network. Aside from the above logs, we also extract
the memory of every instance by creating a memory dump.
The dump contains various information about the instance,
such as the process tree, loaded libraries, and active network
connections. In this way, we preserve the state of the instance
as an image that can be used by memory forensic tools
(e.g., Volatility). By extracting heterogeneous types of data,
PROVCON provides analysts with multi-perspective evidence
that results from cyberattack reproduction.

D. Provenance Graph and Annotation

Data extracted from the compromised environment serves as
a starting point for investigating a cyberattack and developing
a comprehension of it. While analyzing the evidence in its
original form, such data and indicators may not portray the
intrinsic characteristics of a complex cyberattack. Therefore,
a provenance graph is primarily used to provide information
about the entire system execution. Hence, the objective of this
component is to construct a provenance graph that satisfies
the requirements identified in the earlier sections. Based on the
heterogeneous data extracted from the cyber range, PROVCON
utilizes the system-level logs as the foundation for constructing
a provenance graph. The contents of the logs are parsed to
identify causal relationships between entities such as users
and resources. Mainly, PROVCON uses the deep visibility of
system-level activities from sysdig and Sysmon to construct a
provenance graph.

To investigate the cyberattack, analysts have to inspect
and sieve the data to identify attack indicators. However, the
constructed provenance graph and extracted cyberattack data
are massive in terms of content. Identifying the indicators
manually from this data is a laborious task. Furthermore,
indicators that have been identified will need to be arranged
in order to characterize the attack activities. This raises the
need for automated annotation of data, enriching them with
metadata that eases the investigation process for analysts. In
PROVCON, annotation is performed on the extracted data. The
annotation consists of attribution, tagging, and labels for the
data. The annotation involves adding supplementary comments
while attributing the responsible instances and artifacts that
generate this data. Additionally, the data are tagged to the
corresponding event. This provides labels for data that are
generated from either benign or attack activities. To generate
the annotation, we utilize the technical requirements defined
in the cyberattack description as the ground truth. These
requirements contain the necessary information (e.g., name of
instances and artifacts) which are used as the key for auto-
mated data searching. Additionally, the chronological order of
attack steps provides a natural arrangement for the annotated
indicators. Therefore, PROVCON ensures that the extracted
data are annotated with respect to the cyberattack description.

This simplifies the attack investigation and alleviates the need
for manual analysis.

IV. EXPERIMENTS AND RESULTS

This section demonstrates the effectiveness of PROVCON in
constructing provenance graphs meant for augmenting SOC
operations. We utilize the CTI reports from STIXnet [35] and
AttacKG [33] as the basis for reproducing the cyberattack. The
CTI reports are transformed into a structured and standardized
representation called Structured Threat Information Expression
(STIX) language [10]. By using CTI reports in STIX 2.1
format, we ensure standardization and compatibility with other
systems while maintaining the shareability of cyberattack
information.

A. Provenance Graph Construction

To reproduce a cyberattack, we first define the cyberattack
description based on the primitives from the CTI report. To
automate the transformation of domain-specific cyberattack
knowledge into a structured description, we leverage the large
language model’s generative and understanding capabilities to
devise the cyberattack description. Specifically, the framework
uses in-context learning on ChatGPT-4 to learn about our
DSL and the available primitives for building a cyber range.
The cyberattack description for the respective attacks is then
realized as a cyber range. Since the cyber range consists
of heterogeneous instances, we categorize the data extraction
process into two approaches. The first approach is to extract
and transform the data from Linux-based instances, while
the second approach is for Windows-based instances. For the
first approach, we extract the sysdig logs from Linux-based
instances and use them in our custom script to construct the
Linux-based provenance graph. In the second approach, the
Sysmon logs extracted from Windows-based instances are first
loaded into Grafiki3 for provenance graph visualization. We
then use a custom script to extract the nodes and edges and
construct the Windows-based provenance graph. The prove-
nance graphs are saved as a graph description language in
Graphviz DOT format. This format maintains compatibility
with other systems and can be easily transformed into other
graph-based formats.

For the experiments, we reproduce five APT campaigns and
construct their respective provenance graphs as reflected in
Table II. We reproduce the APT32 variant to demonstrate the
additional insight that PROVCON can provide as described in
§ IV-B. Since every APT scenario is constructed with hetero-
geneous instances, the number of records from all instances
is aggregated for the respective data type. Among the audit-
based logs (i.e., auditd and sysdig for Linux, and Sysmon
for Windows), a subset of the records are annotated as they
are identified as key indicators. For the APT32 variant, there
are no indicators found for both auditd and sysdig. This is
because the events in the cyberattack description are entirely
performed on Windows-based instances. As each provenance

3https://github.com/lucky-luk3/Grafiki
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TABLE II: The statistics of the provenance data collected from reproduced cyberattacks.

APT System Logs Provenance
Graph Network Capture Memory

DumpAuditd Sysdig Sysmon Event Others

APT17 Records: 237598
Annotated: 3852

Records: 692854
Annotated: 2

Records: 1118
Annotated: 6 Records: 26010 Nodes: 1855

Edges: 4632
Records: 17459

File Size: 8.71 MB
File Size:

8363.61 MB

APT29 Records: 276178
Annotated: 3857

Records: 670692
Annotated: 2

Records: 1227
Annotated: 1 Records: 31243 Nodes: 2616

Edges: 7019
Records: 6266

File Size: 2.6 MB
File Size:

10431.48 MB

APT32 Records: 177916
Annotated: 1967

Records: 402263
Annotated: 4

Records: 4866
Annotated: 3 Records: 40753 Nodes: 2381

Edges: 6538
Records: 90413

File Size: 45.21 MB
File Size:

8363.61 MB
APT32
variant

Records: 190250
Annotated: 0

Records: 428313
Annotated: 0

Records: 3640
Annotated: 6 Records: 41859 Nodes: 4409

Edges: 8989
Records: 189624

File Size: 91.54 MB
File Size:

8363.61 MB

APT41 Records: 219507
Annotated: 535

Records: 695863
Annotated: 1

Records: 2651
Annotated: 33 Records: 35004 Nodes: 3618

Edges: 7888
Records: 8953
File Size: 2.39 MB

File Size:
12591.48 MB

svchost.exe

wsmprovhost.exe

create process

wsmprovhost.exe

create process

powershell.exe

create process

exploit.pdf.exe

create process

zxshell.exe

create file

cmd.exe

create process

powershell.exe

create process

powershell.exe

create process

create process

systeminfo.exe

create process

wmiutils.dll

loaded by

Fig. 2: Subset of provenance graph from APT17

graph is extracted from every instance, the aggregated num-
ber of nodes and edges from the provenance graphs of all
instances are reflected in Table II. Aside from audit-based
logs, we also extract other types of logs from the cyber range
(e.g., application and authentication logs). Since PROVCON is
designed to generate heterogeneous data as part of the dataset,
we summarize the aggregated network packets and image size
of the memory dump extracted from all of the instances in the
cyber range.

For effective attack investigation, the provenance graph
must include two types of information, namely causality and
dependency. To illustrate the usefulness of provenance graphs
constructed by PROVCON, we show a subset of APT17’s
provenance graph in Figure 2, which reflects the indicators
found in the victim system. An example of causality is
where exploit.pdf.exe causes the zxshell.exe file
to be created. The causality information allows the ana-
lysts to perform root cause analysis using backtracking to
identify an event that is responsible for the observed effect

(e.g., systeminfo.exe process is caused by the execu-
tion of exploit.pdf.exe). Additionally, the execution of
zxshell.exe process has a dependency on the file being
created. The impact of creating the zxshell.exe file can be
assessed using forward tracking to reveal the propagation of
attack steps. Similar nodes can be grouped in the provenance
graph by clustering them (e.g., powershell.exe). This
way, analysts can identify and disrupt critical nodes to effec-
tively halt the attack steps (e.g., disabling powershell.exe
in Group Policy will prevent exploit.pdf.exe from being
executed). This emphasizes the necessity of having a complete
set of indicators in the provenance graph so that SOC can ob-
tain high-quality insights to strategize their defenses effectively
and allocate their resources appropriately.

B. Case Study: APT32 Campaign

This section demonstrates the use of PROVCON to enhance
the understanding of existing cyberattacks by constructing
provenance graphs. In this case study, we reproduce the
APT32 campaign and extract insights that are useful for
attack investigation. The APT32 threat actor, also known as
OceanLotus, is a group known to be active since 2014. Their
attack campaigns target public and private sectors, including
industries from South East Asian countries. Their campaigns
commonly involve spear-phishing, social engineering, and the
use of full-featured malware in conjunction with commercial
tools. The diversity and complexity of the APT32 campaign
impose a challenge for analysts to acquire a comprehensive
understanding of the cyberattack.

The first step to constructing the APT32’s provenance
graph is to utilize the information found in STIXnet’s CTI
report [35]. This is performed by identifying the relevant
attack primitives from the STIX representation of the CTI
report. An example of a primitive is a tool as reflected in
Table III. This primitive describes the process of using COM
scriptlets to download a payload. Based on the description
provided, this primitive is classified under the environment
category. This implies the need for an artifact that repre-
sents a downloader malware. Based on this description, we
devise a script named com_scriptlet.ps1 to represent
this artifact. Due to the lack of information about the exact
behavior of this downloader, we include a ping command as
part of the script’s execution. This is to ensure that network
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powershell.exe

create process

ping.exe
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Fig. 3: Subset of provenance graph showing the execution of
downloader

connectivity is established, as it is a prerequisite characteristic
for a downloader malware.

The cyberattack description consists of technical require-
ments that are used to provision the resources and deploy the
components to form the cyber range. In total, there are 13
artifacts, three instances, and two networks defined in the cy-
berattack description. The instances consist of a C2Server,
a VictimMachine, and a networking node that provides
connectivity across two networks. Every artifact is customized
such that it exhibits the expected behavior when executed
in the cyber range. While using the actual APT32 artifacts
is ideal for replicating the cyberattack, this work focuses on
ensuring that the key indicators are present in the constructed
provenance graph. Therefore, we ensure that the information
between the generated data and the CTI reports are consis-
tent without any contradictions. Additionally, nine events are
defined in the cyberattack description. Using the primitive
above as an example, the cyberattack description defines the
com_scriptlet.ps1 as part of the VictimMachine.
The VictimMachine then executes the PowerShell script
during the attack. This way, the activities defined in the
cyberattack description ensure that the key indicators are
captured in the respective instances when executed.

The cyber range is deployed using the requirements defined
in the cyberattack description. The environment components
are deployed and configured to represent the infrastructure of
the APT32 campaign. The activities defined in the events are
chronologically executed throughout the infrastructure. The
orchestration of activities replays the APT32 campaign in
the cyber range, generating indicators that can be used for
analysis. The data are extracted from the cyber range and
transformed into a provenance graph. An example of the
provenance graph obtained from the VictimMachine is
reflected in Figure 3. The provenance graph indicates that
a powershell initiates the ping program. However, the
com_scriptlet.ps1 script is not present in the prove-
nance graph. Upon closer inspection of the Sysmon logs, the

TABLE III: A snippet of CTI report describing Cobalt Strike
tool

Report Property Value

STIXnet [35]

Type tool

ID tool–90...

Name Cobalt Strike

Description APT32 has used COM scriptlets
to download Cobalt Strike beacons

Tool Type Exploitation

Aliases Beacon

AttacKG [33]

Type tool

ID tool–23...

Name Cobalt Strike

Description
Cobalt Strike stager used
to download and execute

shellcode from a remote server

Tool Type Exploitation

...

wsmprovhost.exe

create process

wsmprovhost.exe

create process

powershell.exe

create process

powershell.exe

create process

cobalt_strike_stager.exe

create process

cmd.exe

create process

powershell.exe

create process

powershell.exe

create process

powershell.exe

create process

UnRAR.exe

create process

cleanup.ps1

create file

Fig. 4: Subset of provenance graph indicating Cobalt Strike
tool execution

execution of com_scriptlet.ps1 is obfuscated and is
not captured during the construction of the provenance graph.
Nevertheless, our annotation process captures the existence of
com_scriptlet.ps1 in the Sysmon logs. This is because
all obfuscated strings are deobfuscated during the process of
finding key indicators. The Sysmon logs also indicate that the
com_scriptlet.ps1’s parent process ID belongs to the
powershell process in the provenance graph. This further
reinforces the identification of ping process as a key indicator
that is initiated by the downloader malware.

Although the constructed APT32 provenance graph provides
insight into the cyberattack, analysts are only limited to the
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information made available from the generated indicators.
This results in an incomplete understanding of APT32 as
the indicators are derived from the perspective of one CTI
report. In PROVCON, we provide the means for analysts
to enhance their understanding by extending the cyberattack
description with more primitives about the same APT32 cam-
paign. In this case, we utilize a second APT32 CTI report
from AttacKG [33] and reproduce the APT32 campaign on
the cyber range. This CTI report includes the technicalities
of the cyberattack from the victim’s perspective, thus further
completing the indicators about the APT32 campaign. To
illustrate the enhancement, we show an example of a tool
primitive in Table III. The primitive from both CTI reports
describes the use of Cobalt Strike as a tool during the
APT32 campaign. However, the second CTI report implies
two malware (i.e., downloader and shellcode payload) and
one instance (i.e., a remote server), thus providing a precise
description that is relevant for constructing the environment
in the cyber range. This shows that primitives from other
CTI reports can be used to complement the initial cyber-
attack description. To demonstrate additional understanding
about APT32, Figure 4 shows a subset of the provenance
graph that illustrates the execution of the downloader mal-
ware. Two indicators that are defined in the cyberattack
description are observed in the provenance graph, namely
cobalt_strike_stager.exe and cleanup.ps1. The
execution of cobalt_strike_stager.exe creates addi-
tional processes that are used to execute future commands (i.e.,
cmd.exe and powershell.exe). Additionally, the prove-
nance graph also indicates the creation of the cleanup.ps1
script from UnRAR.exe. This PowerShell script is used as a
tool to remove attack traces from Sysmon logs at the end of
the attack events. Based on the additional information found in
the provenance graph, analysts can obtain new insights about
the cyberattack, thus advancing toward a comprehensive and
up-to-date understanding of the APT32 campaign.

V. DISCUSSION

The use of CTI reports as the basis in PROVCON allows
analysts to construct a provenance graph with indicators from
documented observations. This allows PROVCON to com-
plement existing knowledge by reproducing cyberattacks to
generate relevant data. As a result, the generated insights that
originate from documented perspectives are useful to augment
the current knowledge of cyberattacks. Furthermore, PROV-
CON design enables the analyst to halt the execution of attack
activities midway, allowing them to perform cyberattack intro-
spection. Additionally, the segregation of primitives between
environment and events allows PROVCON to execute the attack
activities from a specific cyberattack (e.g., APT32 campaign)
on a different set of computing environments. Therefore, SOC
can analyze and observe the impact of a particular cyberattack
when executed on their environment. This creates a prove-
nance graph according to their cyber infrastructure, yielding
personalized insights that are not available in existing attack
datasets. Hence, SOC can align their ongoing workflow of

cyberattack monitoring and detection systems with the insights
from PROVCON, thus leading to the overall improvement of
their cybersecurity posture.

Despite the need for seamless construction of provenance
graphs, an existing challenge hinders end-to-end automation
for PROVCON. The actual artifacts (e.g., malware, exploits)
that are involved in the cyberattack may not be readily
available. Even when they are publicly available, they may not
be executable in our cyber range (e.g., missing dependencies,
obfuscation techniques). To overcome this challenge, one
method is to design an artifact generation tool to automatically
reproduce disarmed artifacts that exhibit the same behavior and
indicators according to a standardized knowledge base (e.g.,
MITRE Malware Behavior Catalog (MBC) [42], ATT&CK
framework [49]). In this work, we devise artifacts aimed at
displaying indicators that should be present in the resulting
provenance graph. We ensure that the custom artifacts are non-
malicious and only executed within the boundary of our cyber
range. Therefore, PROVCON is described as semi-automated
and is progressing towards the goal of fully automated insight
generation.

VI. RELATED WORK

Cyberattack data generation is a crucial aspect of cyber-
attack detection and investigation, as it provides a compre-
hensive view of the attack activities. Existing data generation
works mainly focus on generating provenance graphs from
attack simulations [5], [6], [30], [47] or generating synthetic
provenance graphs from models [14], [20], [21], [36].
Attack Simulations – Flurry [30] is a framework that sim-
ulates attacks and benign activities on hosts and generates
provenance graphs for representation learning. For Operational
Technology (OT) systems, a work [47] presents a modular
dataset generation framework for Supervisory Control and
Data Acquisition (SCADA) cyberattacks to aid the develop-
ment of attack datasets.
Data Synthesis – ProvGen [21] is a generator aimed at
producing large synthetic provenance graphs with predictable
properties of arbitrary size. To address the unbalanced attack
dataset used in model training, a work [36] proposes a
framework for generating cyberattack data using Generative
Adversarial Network (GAN) to expand existing cyberattack
datasets.

Although these works can generate provenance graphs, they
only support limited attack and benign activities and cannot
reflect the complexity of real-world cyberattacks. PROVCON
leverages the CTI report to gather a comprehensive set of
cyberattack primitives and construct provenance graphs in
complex cyber environments that closely resemble real-world
cyberattacks.

VII. CONCLUSION

We highlight the need for SOC to utilize provenance graphs
that contain comprehensive and timely information about
existing cyberattacks. This work proposes a framework to con-
struct a provenance graph that provides useful insights for SOC
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operations. The framework utilizes the cyberattack primitives
extracted from CTI reports to reproduce the cyberattack in a
cyber range. The data extracted from the cyber range are used
to construct provenance graphs which contains key indicators
that are representative of the cyberattack. The insights obtained
from the provenance graphs allow analysts to deepen their
understanding of the cyberattack, thus complementing the
ongoing operations in SOC. To support attack analysis in SOC,
we aim to keep our repository updated with data generated
from future cyberattack reproductions.
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