
DSEF: DNS Synthetic Traffic Evaluation
Framework

Jihye Kim
Research Institute CODE

University of the Bundeswehr Munich
Neubiberg, Germany
jihye.kim@unibw.de

Abstract—DNS threats are central to cyber threat intelli-
gence (CTI); however, access to real attack telemetry is con-
strained by privacy controls, operational limitations, and labeling
costs—hindering reproducible research and the realistic evalua-
tion of emerging detectors. Although a growing body of tools and
ML-based generators can synthesize DNS traffic, the community
still lacks a unified methodology to assess its protocol compliance,
realism, semantics, and utility for defense. To address this
gap, we introduce DSEF, the DNS Synthetic Traffic Evaluation
Framework, a modular and generator agnostic framework for
measuring the realism and defensive utility of synthetic DNS
traffic. DSEF evaluates flows along four complementary axes:
(i) protocol correctness, (ii) distributional realism, (iii) semantic
and behavioral realism, and (iv) downstream defensive utility. By
producing standardized, scenario-aware scores, DSEF enables
consistent benchmarking across heterogeneous generator fami-
lies. Using content-driven DNS threat scenarios, our results show
that DSEF exposes distinct failure modes across replay, marginal
resampling, and latent sampling generators, highlighting where
synthetic traffic diverges from the reference distribution. DSEF
offers a benchmark-ready foundation for the reproducible eval-
uation of synthetic DNS traffic and provides practical guidance
for the safe and effective use of synthetic data in CTI workflows
and security operations.

I. INTRODUCTION

Domain Name System (DNS) is a foundational component
of the Internet and a frequent vector or target for abuse, includ-
ing malware, command-and-control (C2), phishing, and data
exfiltration via DNS tunneling. Within cyber threat intelligence
(CTI), DNS telemetry provides a valuable observational layer
for profiling malicious infrastructure and attack behaviors.
However, access to real-world DNS attack traces remains
constrained due to privacy regulations, operational sensitiv-
ities, and high labeling costs [19], hindering reproducible
research and systematic evaluation of detection and mitigation
techniques.

Generating synthetic network traffic plays a critical role in
addressing these limitations. Synthetic flows provide privacy
preserving, controllable substitutes for operational telemetry,

enabling detector benchmarking, robustness evaluation, and
model development when real data cannot be shared [2], [11],
[16], [39]. In the DNS domain in particular, synthetic traffic
provides a practical opportunity to study attacker behaviors
and to train detection models without requiring access to
sensitive production logs. As a result, DNS traffic synthe-
sis—spanning high-speed replay tools [15], [20], statistical
and machine learning (ML)-based generators [39], and LLM-
driven flow synthesis [11]—has become an increasingly active
research direction. In practice, many of these generators are
already used in security operations centers (SOCs) for detector
testing, analyst training, and proof-of-concept evaluations [26].

Despite this progress, current work focuses primarily on
how to generate synthetic DNS traffic [24], [35], leaving the
open question of how to evaluate the fidelity and defensive
utility of synthetic flows. Different generators represent differ-
ent aspects of DNS behavior: some ensure protocol correctness
but lack semantic coherence, while others model lexical or
behavioral patterns but deviate from realistic statistical dis-
tributions. Without rigorous evaluation, synthetic DNS traffic
may lead to misleading conclusions, overestimated detector
performance, or scenario mismatches in defensive validation.

To address this gap, we introduce DSEF, the DNS Syn-
thetic Traffic Evaluation Framework. DSEF provides a
generator-agnostic validation pipeline that evaluates synthetic
DNS flows along four complementary axes: (i) protocol cor-
rectness via RFC-compliant structural and cross-field checks;
(ii) distributional realism through statistical divergence met-
rics; (iii) semantic and behavioral realism using lexical and
embedding-based representations; and (iv) downstream utility,
measured via separability probes and Train on Real, Test on
Synthetic, Train on Synthetic, Test on Real (TRTS/TSTR)-
style tests. Together, these axes quantify how closely synthetic
flows approximate real DNS traffic and how useful they are for
defensive workflows. This work makes four key contributions:

• We propose a reproducible validation framework that
quantifies both the realism and utility of synthetic DNS
traffic in a unified and interpretable manner.

• We design a generator-agnostic evaluation interface com-
patible with tool-, ML-, and LLM-based generators with-
out requiring internal modifications.

• We formalize four complementary validation axes and
demonstrate that they enable consistent, scenario-aware
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benchmarking across heterogeneous generators.
• We provide standardized schemas, manifests, and con-

tainerized evaluation recipes that support reproducible
assessments and per-scenario comparisons.

By providing a unified, DNS-specific evaluation pipeline,
DSEF establishes a principled basis for benchmarking syn-
thetic DNS traffic and supporting reproducible CTI and net-
work security research.

II. BACKGROUND AND RELATED WORK

A. DNS Traffic in CTI and Security Operations

DNS plays a central role in CTI and security operations
because it reveals both infrastructure level and behavioral
indicators of compromise that directly inform detection and
response workflows. Malicious actors increasingly exploit
DNS for domain based malware distribution, phishing, spam
delivery, and data exfiltration via DNS tunneling. These ac-
tivities manifest at the application layer through semantic
artifacts—such as domain lexical characteristics, response
patterns, and query–response dynamics—that are critical for
attribution and detection. As a result, DNS telemetry provides
a high-value observational layer for characterizing attacker
behaviors and constructing threat intelligence models.

B. Synthetic Traffic Generation Landscape

Table I provides an overview of representative DNS-focused
synthetic traffic generators across three categories—tool-based
systems, ML-based models, and emerging LLM-based gen-
erators. Note that the table reflects the stated capabilities
and evaluation focus of each work, rather than the inherent
limitations of the underlying generator families. We compare
these systems along four dimensions relevant to DNS and
CTI—protocol correctness, statistical realism, semantic real-
ism, and downstream utility—as well as qualitative notions
of cost and deployment complexity.1 These families reflect
dominant paradigms in DNS synthetic traffic generation, each
emphasizing different aspects of realism. In practice, many of
these generators are already used in SOC environments for
detector testing, analyst training, and proof-of-concept evalu-
ations, often without systematic validation of their realism.

Tool-based generators, such as TRex and MoonGen [15],
[20], replay pcap traces or forge packets at line rate with
finely grained control over inter-packet timing and burstiness.
Because they operate directly on RFC compliant packets and
transport headers, they typically achieve near-perfect protocol
correctness. However, their statistical realism is bounded by
the coverage of the underlying traces or domain lists: they
preserve low-level timing and rate properties but do not capture
the full variability, correlation structure, or diurnal patterns of
large scale DNS telemetry. DNS-specific tools (e.g., dnsperf,
dnsgen [5], [14]) primarily replay fixed domain lists or gen-
erate deterministic query patterns, which limits their ability

1Cost and deployment are evaluated qualitatively based on required
hardware (e.g., DPDK-capable NICs), configuration overhead, dependency
footprint, and operator expertise, as reported in documentation and prior
evaluations.

to capture behavior rich DNS threat scenarios. In contrast,
tunneling frameworks (e.g., dnscat2, iodine [22], [40]) embed
application payloads into DNS queries and responses, provid-
ing exfiltration semantics. While this gives them higher se-
mantic realism compared to other tool-based generators, their
behavior is still constrained by deterministic encoding schemes
and fixed tunnel workflows. As a result, the downstream utility
of tool-based generators—aside from tunneling tools—has
primarily focused on performance benchmarking and protocol-
level robustness testing, with more limited applicability to the
training or evaluation of content-aware detectors.

ML-based generators learn statistical patterns from cap-
tured DNS data. Packet-level models, such as PAC-GAN [9],
generate DNS packets by modeling low-level protocol fields
and header structures, while DomainGAN and DOLOS [10],
[16] focus on the lexical and distributional properties of DNS
names and queries to generate benign-looking or evasive DNS
traffic. CL-GAN [32] further introduces continual learning for
adaptive DGA-style domain generation, but similarly operates
at the level of lexical and statistical pattern modeling. With
appropriate post processing and constraint enforcement, these
models generally produce protocol-valid samples and replicate
the marginal and joint feature distributions of the training
data, resulting in strong statistical realism. However, their
semantic modeling remains limited, as it does not explicitly
capture DNS-level intent, protocol semantics, or CTI-relevant
behavioral context, often leaving their downstream utility
focused on expanding the statistical feature space.

LLM-based generators operate on textual or structured
abstractions of network traffic. Generators such as PAC-GPT
and GPT-on-the-Wire [25], [29] derive protocol structures
or flow templates from JSON-, TLV-, or DSL-like descrip-
tions, whereas TrafficLLM [11] directly emits multi-packet
sequences (e.g., DNS, HTTP) guided by scenario-level attack
descriptions. By conditioning on high-level prompts that de-
scribe campaigns, payload characteristics, or adversary goals,
these systems often achieve substantially richer semantic real-
ism than tool- or ML-based generators: synthesized domains,
content, and flow patterns can closely mimic realistic phishing,
exfiltration, or C2 activity. However, protocol correctness is
not inherent to these models and typically depends on external
builders or careful prompt engineering. Likewise, temporal
structure is not explicitly modeled and remains largely prompt
dependent, which can affect statistical realism.

Despite the proliferation of DNS traffic generators, the field
lacks a credible way to determine whether these systems
actually produce flows that resemble real DNS behavior or
meaningfully support defensive evaluation. This absence of
standardization has created a fundamental problem: synthetic
DNS traffic is widely used in both research and operational
settings, yet it is almost never rigorously validated for its
impact on downstream security workflows. DSEF directly
addresses this gap by establishing a unified benchmark for
measuring the realism and defensive value of synthetic DNS
flows. By providing a common validation interface, DSEF en-
ables apples-to-apples comparisons across generator families.
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TABLE I: Synthetic traffic generators across Tool / ML / LLM families. (Legend: ✓ = yes, ˜ = partly, ✗ = no.)

Family Name Role / capability (DNS-specific) Cost Deployment Protocol
correctness

Statistical
realism

Semantic
realism

Downstream
utility

Tool TRex [20] High-speed PCAP replay; accurate low-level packets;
supports burstiness and timing control.

Med–High Med ✓ ˜ ✗ ˜

MoonGen [15] Scriptable DPDK-based generator with precise times-
tamps and custom packet emission.

Med High ✓ ˜ ✗ ˜

dnsperf / resperf [14] DNS query generator based on fixed domain lists;
primarily used for performance benchmarking of re-
cursive/authoritative servers.

Low–Med Med ✓ ˜ ✗ ˜

dnsgen [5] Raw socket DNS generator; supports large source-
port ranges and adaptive sending patterns.

Low Med ✓ ˜ ✗ ˜

dnscat2/iodine [22], [40] DNS tunneling generators; true exfiltration semantics;
widely used as ground truth tunnel traffic.

Low Low ✓ ˜ ✓ ✓

ML PAC-GAN [9] CNN GAN that generates raw IP packets, including
DNS, by learning byte-level structure.

Med–High Med ✓ ✓ ✗ ˜

DOLOS [16] GAN-guided DNS exfiltration generator mimicking
benign lexical and statistical query distributions.

Med–High Med ˜ ✓ ˜ ✓

DomainGAN [10] GAN-based generator for benign-like domains; learns
Alexa lexical/n-gram structure.

Med–High Med ˜ ✓ ˜ ˜

CL-GAN [32] Continual-learning GAN + Transformer for adaptive
DGA string generation.

Med–High Med ˜ ✓ ˜ ✓

LLM PAC-GPT [25] LLM that outputs structured protocol layouts and
semantically coherent headers.

Med–High Med ˜ ✓ ✓ ˜

GPT-on-the-Wire [13] LLM for multi-protocol packet and conversation gen-
eration using Scapy builders and Mixture-of-Experts.

Med Low–Med ˜ ˜ ✓ ✓

TrafficLLM [11] Sequence-modeling LLM for multi-packet (e.g.,
DNS, HTTP) flows with scenario-driven behaviors.

Med–High Med ˜ ✓ ✓ ✓

Generation Layer

Validation Layer

Composite Evaluation Score :

Per-axis normalized metrics

Attack Scenarios: Benign / Malware / Spam / Phishing / Exfiltration …

Axis 1 Axis 2 Axis 3 Axis 4

Protocol 
Correctness

Distribution
Realism

Behavioral
Realism

Downstream
Utility

Tool-based
generator

ML-based
generator …..

LLM-based 
generator

Fig. 1: DSEF overview. Three Generation Layer generator
families feed a sequential Validation Layer: Axis 1 (Protocol
Correctness), Axis 2 (Distributional Realism), Axis 3 (Seman-
tic & Behavioral Realism), and Axis 4 (Downstream Utility).

III. DSEF DESIGN

A. Framework Overview

DSEF is a modular, scenario-adaptive framework that eval-
uates synthetic DNS traffic using a multi-axis validation
pipeline. Rather than enforcing a single end-to-end pipeline,
DSEF treats generation and validation as loosely coupled com-
ponents that communicate through a unified feature schema.
This decoupling is deliberate: the Validation Layer can score
flows produced by DSEF’s own backbones, by external gener-
ators, or by real measurements, enabling cross-source bench-
marking under a single set of realism criteria. The framework
is organized into two conceptual layers: a Generation Layer
and a Validation Layer. The Generation Layer accepts traffic

from multiple generator families, following the taxonomy
presented in Table I. Each generation module emits DNS flows
encoded in a shared tabular schema that captures statistical
(e.g., length, entropy, counts), lexical (e.g., n-grams, label
structure), and temporal (e.g., inter-arrival times, burst pat-
terns) attributes. This schema abstracts away generator-specific
idiosyncrasies and preserves interoperability with downstream
analysis tools and CTI workflows.

The Validation Layer quantifies realism along four com-
plementary axes: (i) protocol correctness, (ii) distributional
realism, (iii) semantic and behavioral realism, and (iv) down-
stream utility. Each axis aggregates a set of calibrated metrics
Mi whose values are mapped to a common [0, 1] scale by
axis-specific normalization functions fi(·). These functions are
parameterized using held-out partitions of the reference dataset
so that the resulting scores represent interpretable deviations
from real DNS behavior. To integrate realism across axes,
DSEF computes a scenario-aware composite score:

SDSEF =

4∑
i=1

wi fi(Mi),

where wi encodes the salience of axis i for a given DNS
abuse category. For example, content-driven categories (e.g.,
phishing, exfiltration) emphasize semantic realism, whereas
benign or malware traffic places greater weight on protocol and
distributional fidelity. Figure 1 illustrates how heterogeneous
generators plug into the Generation Layer and are evaluated in
a unified manner by the sequential Validation Layer, yielding
per-axis scores and a composite SDSEF that can be compared
across methods and scenarios.
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B. Attack Scenarios

DSEF is instantiated on five activity categories: Benign,
Malware, Phishing, Spam, and Exfiltration. While Benign
and Malware traffic primarily require protocol and distribu-
tional fidelity, phishing and spam traffic exhibit campaign-
level behaviors (e.g., repeated domain templates, attacker-
specific lexical patterns) that should be preserved for realistic
synthesis. Exfiltration is modeled using six payload types
(i.e., Text, Image, Video, Compressed, Audio, Executable) in
both light and heavy variants, determined by the underlying
encoding and chunking strategy. This setup enables DSEF to
evaluate whether generators can preserve a realistic QNAME
structure, timing, and traffic volume while embedding rich
payloads. At the same time, it allows the Validation Layer
to assess its ability to distinguish between semantically empty
DNS abuse and content-bearing tunneling activity.

C. Validation Interface

To make DSEF usable as a benchmark, the Validation Layer
exposes a standardized interface and logging model.

a) Manifests: Each run produces a manifest.json
file capturing the random seed, backbone configuration, hyper-
parameters, software versions, and dataset splits. This manifest
enables the reproduction of a run or its replay under updated
validation metrics.

b) Auto-validator: Given a set of flows encoded in
the DSEF feature schema, the auto-validator computes: (i)
protocol checks via DNS parsers with RFC 1035 cross-field
constraints; (ii) distributional distances using standard diver-
gence metrics (e.g., Jensen–Shannon, Wasserstein, MMD);
(iii) temporal fidelity metrics such as autocorrelation (ACF/-
PACF) over inter-arrival times; (iv) semantic and behavioral
metrics, including a Fréchet Traffic Distance (FTD) computed
in an embedding space; and (v) downstream utility indicators
(e.g., TRTS/TSTR-style evaluations), which we outline as a
direction for future studies. This automated validation module
provides a unified execution point for all axis-level metrics,
ensuring consistent scoring across generators and scenarios.

IV. VALIDATION METHODOLOGY

A central goal of DSEF is to evaluate whether synthetic
DNS traffic preserves the functional, statistical, and semantic
properties present in a reference corpus of real-world DNS
activity. In our instantiation, the BCCC-CIC-Bell-DNS-2024
dataset serves as this reference distribution: all generators are
evaluated against its benign and malicious flow partitions.
DSEF employs a four-axis validation methodology that scores
synthetic traffic along: (i) protocol correctness, (ii) statistical
and temporal fidelity, (iii) semantic and behavioral plausibility,
and (iv) downstream defensive utility. All axes are calibrated
using disjoint splits of the reference dataset, enabling distances
to be interpreted as how far a generator deviates from the
realism exhibited within real DNS traffic distributions. In
principle, each axis can be instantiated with multiple metrics;
in this work, we focus on a lightweight subset that can be
computed reliably from the available flow-level features.

Let Dref denote the reference flow set, and let Dsyn denote
the synthetic flows. Each flow f is mapped to a DNS fea-
ture vector ϕ(f) containing protocol fields, lexical attributes
(e.g., entropy, n-grams), and temporal features (e.g., inter-
arrival times, burst patterns). All validation splits use stratified
partitioning to preserve class balance while preventing label
leakage across training, validation, and test sets.

A. Axis 1: Protocol Correctness

Protocol correctness evaluates whether each synthetic flow
conforms to DNS and EDNS(0) format specifications. DSEF
measures correctness by applying a DNS/EDNS(0) parser
to every flow and flagging any structural violations defined
in RFC 1035 and EDNS(0) [1], [12], [23]. Let ν denote
the proportion of flows that fail one or more constraints.
The checks include: (i) QTYPE–RDATA mismatches (e.g.,
A/AAAA queries paired with incompatible RDATA formats),
(ii) invalid QCLASS or RCODE assignments, (iii) NXDO-
MAIN inconsistencies such as ANCOUNT > 0, (iv) QNAME
label-length or total-length violations (label ≤ 63, total ≤
255), and (v) EDNS(0) DO/CD bit incoherence. The protocol-
correctness score is defined as:

sprot = 1− ν, (1)

This axis isolates structural validity: even if a synthetic
query is semantically plausible, it is penalized if it violates fun-
damental DNS format constraints. Therefore, Axis 1 penalizes
only RFC-level structural errors; abnormal but syntactically
valid values commonly found in attack traffic (e.g., high-
entropy QNAMEs or unusual TTLs) do not reduce the score.

B. Axis 2: Distributional Realism

This axis measures whether synthetic flows preserve the sta-
tistical structure observed in real DNS telemetry. We evaluate
distributional fidelity along three complementary dimensions:
(a) feature-wise univariate similarity, (b) multivariate joint
structure, and (c) temporal dynamics.

a) Univariate Feature Fidelity: For each feature k, let
pref
k and psyn

k denote the empirical marginal distributions com-
puted from the reference and synthetic datasets. To quantify
the deviation between these marginals, we adopt a com-
bined divergence based on the Jensen-Shannon divergence
(JSD) [17], [28], [34] and the 1-Wasserstein distance (W1) [4],
[31], [36], as these metrics capture distinct and complementary
aspects of distributional drift.

Jensen-Shannon divergence: Let H(P ) denote the Shannon
entropy of a discrete distribution P . For two distributions P
and Q, the JSD is defined as:

JSD(P∥Q) = H

(
P +Q

2

)
− 1

2

(
H(P ) +H(Q)

)
.

JSD is a symmetric, bounded f -divergence that measures
the mismatch in distributional shape between two histograms.
It is particularly sensitive to changes in modality, entropy, or
concentration of probability mass—a useful property for DNS
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features whose categorical or quasi-discrete distributions may
shift under synthetic generation (e.g., RCODE frequencies,
QTYPE usage). Small perturbations in frequency mass induce
small increments in JSD, whereas mode creation or deletion
yields substantially larger divergence values.

1-Wasserstein distance: For real-valued DNS features (e.g.,
TTL, query length, or response size), the absolute magni-
tude of feature values is operationally meaningful. The 1-
Wasserstein distance (W1), defined as:

W1(P,Q) = inf
γ∈Π(P,Q)

E(x,y)∼γ [ |x− y| ],

quantifies the minimum transport cost required to transform
distribution P into Q. Unlike JSD, which is largely insensitive
to uniform shifts, W1 increases linearly with changes in
the characteristic scale or location of a distribution (e.g.,
systematically larger TTL values or inflated packet sizes).
This property makes W1 particularly effective at detecting
magnitude distortions that commonly arise in synthetic DNS
traffic, even when the overall distributional shape is preserved.
Because a generator may accurately match the shape of a
distribution while distorting its scale, neither JSD nor W1

alone provides a complete measure of feature fidelity. We
therefore define the following composite univariate distance:

duni
k = λJSD JSD

(
pref
k ∥psyn

k

)
+ λW W1

(
pref
k , psyn

k

)
,

where λJSD and λW normalize the relative contributions
of the two terms based on reference-split variability. This
combined metric yields a robust univariate drift signal that
captures both structural changes (e.g., mode shifts, entropy
changes) and systematic magnitude shifts (e.g., inflation or
compression of DNS feature values).

b) Multivariate Joint Fidelity: Univariate divergences
capture marginal alignment, but DNS flows also exhibit strong
cross-feature dependencies. To evaluate whether a generator
preserves this joint correlation structure, we compare the fea-
ture sets X = {ϕ(f) | f ∈ Dref} and Y = {ϕ(f) | f ∈ Dsyn}
using the Maximum Mean Discrepancy (MMD) [18], [27], a
kernel-based, nonparametric test of distributional equality:

dMMD(X,Y ) =

∥∥∥∥∥ 1

|X|
∑
x∈X

k(x, ·)− 1

|Y |
∑
y∈Y

k(y, ·)

∥∥∥∥∥
2

H

, (2)

where k is a characteristic kernel (typically Gaussian) and
H is the associated reproducing kernel Hilbert space [7].
MMD is particularly suitable for DNS flows because it remains
stable under high-dimensional tabular features and captures
nonlinear dependencies without assuming a specific parametric
form. In practice, we apply an RBF kernel to standardized
numeric features and select the bandwidth using the median
heuristic, following standard practice in kernel two-sample
testing [18]. In this setting, dMMD(X,Y ) = 0 if and only
if the underlying multivariate distributions coincide, while
remaining computationally tractable at our flow-level sample

sizes. Accordingly, DSEF adopts MMD as the default mul-
tivariate fidelity metric in Axis 2, with additional distances
(e.g., Energy Distance [33]) available for diagnostic analysis.

c) Temporal Fidelity: DNS activity exhibits distinctive
timing behaviors governed by caching dynamics, resolver burst
patterns, and attacker workflows. To assess whether synthetic
flows preserve such temporal signatures, we evaluate the inter-
arrival time (IAT) series using two complementary diagnostics:
(i) the empirical autocorrelation function (ACF) and (ii) the
partial autocorrelation function (PACF) up to a fixed lag L [8].
Let ρACFref(ℓ) and ρACFsyn(ℓ) denote the lag-ℓ ACF of
the reference and synthetic IAT sequences, and analogously
ρPACFref(ℓ) and ρPACFsyn(ℓ) for the PACF. ACF captures short-
range dependence and burstiness, while PACF isolates direct
lag-ℓ effects by removing intermediate correlations. Together,
they provide a lightweight but expressive summary of temporal
structure, enabling DSEF to detect generators that match
marginal IAT statistics yet fail to reproduce realistic timing
dependencies. We summarize temporal deviation as:

dtemp =
1

2

(∥∥ρACF
ref − ρACF

syn

∥∥
2
+

∥∥ρPACF
ref − ρPACF

syn

∥∥
2

)
, (3)

with vectors taken over lags ℓ = 1, . . . , L. A generator,
therefore, receives high temporal deviation when it matches
marginal IAT statistics but fails to reproduce burstiness or
short-range dependence patterns.

Normalizing Distances: Different traffic classes and
datasets exhibit inherently different levels of variability: cer-
tain flows (e.g., heavy exfiltration) naturally induce higher
multivariate or temporal divergence than others, even when
comparing disjoint subsets of the same dataset. To ensure com-
parability across scenarios and to avoid penalizing generators
for variability intrinsic to the underlying traffic, we normalize
all distance measures using class-specific reference variability
estimates:

g(d) = clip
(

dR/S − d

dR/S − dref
, 0, 1

)
, (4)

where dref denotes the divergence observed between ref-
erence partitions, representing the best achievable fidelity
under dataset-intrinsic variability, and dR/S is a scenario-
specific upper reference bound chosen to reflect the largest
divergences observed across reference and stress partitions.
This normalization is applied to duni

k , dMMD, and dtemp, yielding
realism scores that are interpretable and comparable across
generators, classes, and scenarios.

C. Axis 3: Semantic & Behavioral Realism

Many DNS abuse behaviors manifest at the lexical and flow-
structure levels—patterns that cannot be captured by protocol
checks or marginal statistical divergences alone [3].

a) Fréchet Traffic Distance (FTD): To quantify semantic
realism, DSEF adopts FTD [21], [38], conceptually analo-
gous to the Fréchet Inception Distance used in generative
vision models. Let Er and Es denote the embedding sets
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extracted from an AutoEncoder (AE) trained exclusively on
real flows. AE-based representations provide a compact se-
mantic manifold that captures co-occurring lexical, structural,
and temporal patterns [6], [30], and they have been widely
used as unsupervised feature extractors for network traffic and
security telemetry. FTD measures the discrepancy between the
Gaussian approximations of these embedding distributions:

FTD(Er, Es) = ∥µr − µs∥22
+Tr

(
Σr +Σs − 2(Σ1/2

r ΣsΣ
1/2
r )1/2

)
.

(5)
A low FTD indicates that synthetic flows align with real

DNS activity in the learned semantic manifold, capturing high-
level patterns (e.g., phishing-style lexical templates, structured
payload-encoding behavior in exfiltration traffic, or the algo-
rithmic regularities characteristic of DGA-generated domains).

Unlike Axis 1 and Axis 2, which evaluate structural validity
and statistical alignment, Axis 3 focuses on the behavioral
meaning encoded in DNS queries and their broader flow
context. FTD serves as the sole semantic metric used in the
composite realism score, providing a stable and interpretable
measure of semantic alignment across heterogeneous generator
families. For content-driven categories (e.g., phishing, exfil-
tration), LLM-based generators typically achieve lower FTD
values and stronger embedding-space alignment, producing
flows that cluster near real malicious activity in the learned
semantic space.

D. Axis 4: Downstream Utility

Realism is necessary but insufficient: synthetic DNS traffic
should also be useful for downstream tasks such as training,
robustness evaluation, and red teaming [37]. Axis 4 therefore
evaluates whether synthetic flows can support detection and
classification pipelines in a manner consistent with real-world
training or deployment settings. In principle, downstream util-
ity can be assessed using any defender model. DSEF supports
a range of evaluation settings, including rule-based systems,
traditional ML classifiers, and LLM-based detectors. Utility
is measured using standard metrics such as ROC-AUC or
changes in TPR at low FPR levels; however, a comprehensive
defender comparison is left to future work.

Remarks on Diversity (Future Extension): While the
core DSEF score relies solely on utility-based metrics, the
framework can optionally incorporate diversity indicators (e.g.,
normalized entropy, Simpson index) to diagnose mode col-
lapse or limited coverage in synthetic traffic generators. Such
indicators provide useful diagnostic signals; however, their
interpretation is inherently scenario dependent. Accordingly,
DSEF treats them as optional extensions.

E. Composite Score

For a given scenario c (e.g., benign, malware, phishing,
spam, or exfiltration), each axis produces a scenario-specific
subscore:

s̄
(c)
i =

∑
m∈Mi

αim g
(
m(c)

)
,

∑
m

αim = 1, (6)

where Mi is the set of metrics on axis i and αim controls
the internal weighting of metrics within that axis (fixed across
generators). The overall DSEF realism score for generator G
on scenario c is then:

SDSEF(G, c) =

4∑
i=1

w
(c)
i s̄

(c)
i (G),

∑
i

w
(c)
i = 1, (7)

where w(c) encodes the relative importance of the four
axes for scenario c and is shared across all generators. We
emphasize that DSEF does not rely on a fixed choice of
w(c); weights can be adjusted to reflect analyst priorities or
operational constraints while preserving the same axis level
validation pipeline and metrics.

V. EVALUATION

We evaluate DSEF on content-driven DNS abuse using the
four-axis methodology introduced in Section IV. Our goals are
twofold: (i) to demonstrate that the DSEF validation pipeline
can be instantiated end-to-end on a benchmark DNS dataset
and yields stable, interpretable scores, and (ii) to show that
the four axes expose meaningful differences between synthetic
generators with varying levels of realism. To this end, we
evaluate three representative generator types: a Tool-style
replay generator (class-wise resampling of real flows), an IMS
(Independent Marginal Sampler) generator that preserves per-
feature marginals but destroys joint structure, and a lightweight
ML-AE (ML-based latent sampling) generator that samples
from an AutoEncoder-derived latent space. These generators
span a spectrum from highly realistic (Tool) to deliberately
structure-free (IMS) to moderately coherent but semantically
weak (ML-AE). We then analyze axis-wise realism across the
five activity labels present in the dataset.

A. Experimental Setup

Dataset: We use the BCCC–CIC–Bell–DNS–2024
dataset, which contains benign, malware, phishing, spam,
and content-driven exfiltration scenarios. Each record exposes
more than 120 DNS statistical, lexical, and timing features in
tabular CSV format. We instantiate DSEF on the flow-level
schema described in Section III and restrict exfiltration to the
“heavy” variants of six payload types. Table II reports the
resulting class counts.

Environment: All experiments are conducted in a con-
tainerized Python environment with fixed random seeds (42–
46). For each run, we log the generator type, configuration, and
seed identifiers in JSON files alongside the per-axis metrics,
enabling full replay and inspection of the evaluation settings.
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TABLE II: Dataset class counts and exfiltration variants
(BCCC–CIC–Bell–DNS–2024).

Traffic class Exfiltration file type

Benign 3,764,933 Text 55,514
Malware 81,698 Image 56,702
Spam 30,371 Audio 52,544
Phishing 43,348 Video 58,846
Exfiltration 322,127 Compressed 45,136

Exe 53,385

TABLE III: Synthetic generators used in DSEF and their
evaluation roles.

Generator Mechanism Evaluation Role

Tool (Replay) Resamples real flows
(class-wise), preserving
the original joint structure
and semantics.

Upper-bound realism;
verifies that DSEF returns
near-perfect scores for
near-real data.

IMS Independently resamples
each feature from empiri-
cal marginals; thereby de-
stroying cross feature de-
pendencies and semantics.

Tests DSEF’s ability to
distinguish marginal
alignment from
joint/semantic fidelity
(Axis 2 vs. 3 separation).

ML-AE Samples from an AE-
derived latent space
using class-conditional
Gaussians; QNAMEs are
generated by a simple
Markov chain.

Represents intermediate-
quality synthesis; reveals
subtle distributional and
semantic drift that simpler
baselines may miss.

Stratified splits: Because our focus is to validate the
DSEF validation layer, we adopt a stratified split. We partition
the reference dataset into the train (70%), validation (15%),
and test (15%) splits using stratification over the labels,
ensuring that all classes are represented in each split and that
axis-wise scores remain stable across seeds. Representation
learning components (e.g., Axis 3 AutoEncoder) are trained
only on the training split.

Synthetic generators: We evaluate three synthetic gen-
erators that emit flows in the same tabular schema described
above, chosen to probe the effectiveness of DSEF’s validation
design and to expose distinct failure modes across the four
axes. Details of the generators are summarized in Table III.

B. Generator Comparison: Tool, IMS, and ML-AE

We now ask whether DSEF can distinguish between gener-
ators with different realism regimes. To this end, we compare
axis-wise scores for the Tool, IMS, and ML-AE generators
under identical splits, seeds, and normalization baselines, and
report per-class scores averaged over five seeds. Table IV
highlights several coherent results.

Axis 2 (Distributional realism): For benign, malware, and
phishing traffic, Tool and IMS both achieve high distributional
realism (s̄2 ≈ 0.96–0.99), indicating that matching per-feature
marginals is often sufficient to preserve global numeric statis-
tics in these scenarios. Exfiltration flows are more sensitive:
Tool’s class-wise replay yields a moderate average score
(s̄2 ≈ 0.61) with substantial seed-to-seed variability, while
IMS reaches higher but still imperfect realism (s̄2 ≈ 0.79).
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Fig. 2: Axis 2 vs. Axis 3 realism plane. Each point corresponds
to a (generator, class, seed) run. The plane separates distinct
failure regimes: Tool clusters near high distributional and se-
mantic realism, IMS preserves marginal statistics but exhibits
semantic degradation, and ML-AE shows strong distributional
drift with class-dependent semantic collapse.

TABLE IV: Axis-wise realism scores per backbone and class
(mean over five seeds).

Backbone Class s̄2 s̄3 H(QNAME) u

Tool benign 0.96 1.00 6.88 0.99
Tool exfiltration 0.61 0.99 5.11 0.69
Tool malware 0.99 0.99 6.88 0.98
Tool phishing 0.99 0.99 6.55 0.83
Tool spam 1.00 1.00 6.20 0.57

IMS benign 0.99 1.00 6.88 0.99
IMS exfiltration 0.79 0.97 5.11 0.69
IMS malware 0.99 0.94 6.88 0.98
IMS phishing 0.98 0.93 6.55 0.83
IMS spam 0.99 0.96 6.20 0.57

ML-AE benign 0.37 1.00 6.91 1.00
ML-AE exfiltration 0.32 0.99 6.91 1.00
ML-AE malware 0.36 0.64 6.91 1.00
ML-AE phishing 0.36 0.77 6.91 1.00
ML-AE spam 0.35 0.93 6.91 1.00

In contrast, ML-AE exhibits substantially lower Axis 2
scores across all classes (s̄2 ≈ 0.32–0.37), revealing pro-
nounced distributional drift induced by latent space sampling.
Overall, Axis 2 highlights that marginal alignment alone can
yield high realism scores, while more expressive generators
may significantly distort global flow statistics.

Axis 3 (Semantic realism): Tool achieves near-perfect
semantic realism for all classes (s̄3 ≈ 0.99–1.00), as expected
from class-wise replay. IMS also remains semantically close
to the real manifold for benign and exfiltration flows, but
its Axis 3 scores for malware and phishing slightly drop to
s̄3 ≈ 0.94 and 0.93, respectively. ML-AE displays a more
nuanced pattern: benign and exfiltration flows remain near-
perfect in Axis 3 (s̄3 ≈ 0.99–1.00), whereas malware and
phishing degrade substantially (s̄3 ≈ 0.64 and 0.77). This
suggests that the AE manifold for malicious and phishing
traffic is more brittle: small latent perturbations already move
samples away from the real embedding distribution. Spam
shows a similar pattern: Tool and IMS remain close to the
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reference (s̄3 ≳ 0.96), while ML-AE is marginally lower
(s̄3 ≈ 0.93), though the difference is small given the limited
coverage of the class. Figure 2 visualizes generator behavior
in the joint Axis 2–Axis 3 space.

Axis 4 (Utility & diversity): Because IMS and Tool reuse
real QNAMEs from the corresponding class, their lexical
entropy and unique domain ratios are nearly identical to
the reference dataset (e.g., benign H ≈ 6.88, u ≈ 0.99;
spam H ≈ 6.20, u ≈ 0.57). In contrast, ML-AE’s Markov
chain QNAME generator produces almost maximally diverse
domains (H ≈ 6.91, u = 1.00 for all classes): every synthetic
flow effectively receives a distinct domain name drawn from
a high entropy character model. This diversity is largely
orthogonal to the other axes of realism.

Taken together, the results show that DSEF consistently
assigns high realism scores to Tool replay, markedly lower
scores to the deliberately unrealistic IMS generator along the
semantic axis, and intermediate, regime-dependent scores to
the ML-AE generator. Axes 2 and 3 are complementary:
Axis 2 detects global distributional drift, while Axis 3 is
sensitive to the breakdown of joint structure and higher-order
semantics. Overall, these experiments demonstrate that our
methodology is both stable under replay and sensitive to
qualitatively different failure modes in synthetic DNS traffic,
supporting DSEF as a benchmark-ready evaluation harness for
synthetic traffic generators.

VI. DISCUSSION

A. Implications for CTI and Security Operations

DSEF provides a practical and reproducible foundation for
benchmarking synthetic DNS data in CTI workflows. From
the operational perspective, modern SOCs increasingly rely
on synthetic traffic for analyst training, proof of concept
evaluations, and red-team exercises. However, unvalidated
synthetic traffic datasets can mislead triage workflows. DSEF
can directly address this risk by quantifying traffic realism
along protocol, statistical, semantic, and utility dimensions,
enabling SOC engineers to select or tune generators that align
with concrete operational objectives. Analysts can therefore
select generators whose DSEF profiles align with task-specific
CTI objectives—for instance, prioritizing semantic fidelity
for scenario modeling or distributional realism for detector
benchmarking. In this sense, DSEF supports safe and effective
synthetic data driven testing for security operations.

B. Ethics, Safety, and Reproducibility Considerations

Synthetic traffic used in security research must be handled
responsibly to avoid enabling offensive misuse. Any generator
intended for use within DSEF should avoid producing re-
solvable domains, operationally harmful artifacts, or payload-
bearing content. Public manifests record hyperparameters and
configuration details, enabling third parties to audit, replay,
and extend evaluations while maintaining a transparent and
trustworthy analysis pipeline.

VII. CONCLUSION

This work introduces DSEF, a framework that unifies DNS
synthetic traffic evaluation under a reproducible, benchmark-
oriented design. DSEF scores synthetic flows along four com-
plementary axes—protocol correctness, distributional fidelity,
semantic and behavioral realism, and downstream defensive
utility—each normalized using reference-based baselines to
provide interpretable measures of realism. Our preliminary
study with three different generators shows that DSEF can dis-
tinguish qualitatively different generator regimes. Tool replay,
as expected, achieves near-real scores along distributional and
semantic axes; IMS preserves marginal feature statistics but
degrades joint structure and semantic coherence; and ML-AE
occupies an intermediate region, maintaining coarse benign
structure while drifting for malicious classes. These findings
validate DSEF as a practical, standardized lens for assessing
the reliability and utility of synthetic DNS traffic.

Future releases of DSEF will expand both the breadth of
evaluated generators and the dimensions of realism captured
by the framework. We plan to evaluate additional generator
families—including more advanced LLM-based and hybrid
models—and to extend the assessment to a wider set of DNS
attack types (e.g., reflection/amplification attacks, DNSSEC-
related behaviors). In addition, we aim to deepen Axis 4
by conducting utility- and diversity-oriented studies. This
includes reproducibility experiments in which real detection or
mitigation systems are evaluated under controlled conditions
using synthetic traffic generated by DSEF. Beyond bench-
marking generators, DSEF highlights a broader operational
risk: synthetic DNS traffic that is not properly validated can
distort detector behavior and analyst decision making. By
making realism and utility explicit and measurable, DSEF
enables security teams to use synthetic traffic more safely and
deliberately in training, evaluation, and testing workflows.
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