Youngwook Do (JPMorganChase and Georgia Institute of Technology), Tingyu Cheng (Georgia Institute of Technology and University of Notre Dame), Yuxi Wu (Georgia Institute of Technology and Northeastern University), HyunJoo Oh(Georgia Institute of Technology), Daniel J. Wilson (Northeastern University), Gregory D. Abowd (Northeastern University), Sauvik Das (Carnegie Mellon University)

Passive RFID is ubiquitous for key use-cases that include authentication, contactless payment, and location tracking. Yet, RFID chips can be read without users’ knowledge and consent, causing security and privacy concerns that reduce trust. To improve trust, we employed physically-intuitive design principles to create On-demand RFID (ORFID). ORFID’s antenna, disconnected by default, can only be re-connected by a user pressing and holding the tag. When the user lets go, the antenna automatically disconnects. ORFID helps users visibly examine the antenna’s connection: by pressing a liquid well, users can observe themselves pushing out a dyed, conductive liquid to fill the void between the antenna’s two bisected ends; by releasing their hold, they can see the liquid recede. A controlled evaluation with 17 participants showed that users trusted ORFID significantly more than a commodity RFID tag, both with and without an RFID-blocking wallet. Users attributed this increased trust to visible state inspection and intentional activation.

View More Papers

Deanonymizing Device Identities via Side-channel Attacks in Exclusive-use IoTs...

Christopher Ellis (The Ohio State University), Yue Zhang (Drexel University), Mohit Kumar Jangid (The Ohio State University), Shixuan Zhao (The Ohio State University), Zhiqiang Lin (The Ohio State University)

Read More

Repurposing Neural Networks for Efficient Cryptographic Computation

Xin Jin (The Ohio State University), Shiqing Ma (University of Massachusetts Amherst), Zhiqiang Lin (The Ohio State University)

Read More

NodeMedic-FINE: Automatic Detection and Exploit Synthesis for Node.js Vulnerabilities

Darion Cassel (Carnegie Mellon University), Nuno Sabino (IST & CMU), Min-Chien Hsu (Carnegie Mellon University), Ruben Martins (Carnegie Mellon University), Limin Jia (Carnegie Mellon University)

Read More

Magmaw: Modality-Agnostic Adversarial Attacks on Machine Learning-Based Wireless Communication...

Jung-Woo Chang (University of California, San Diego), Ke Sun (University of California, San Diego), Nasimeh Heydaribeni (University of California, San Diego), Seira Hidano (KDDI Research, Inc.), Xinyu Zhang (University of California, San Diego), Farinaz Koushanfar (University of California, San Diego)

Read More