Youngwook Do (JPMorganChase and Georgia Institute of Technology), Tingyu Cheng (Georgia Institute of Technology and University of Notre Dame), Yuxi Wu (Georgia Institute of Technology and Northeastern University), HyunJoo Oh(Georgia Institute of Technology), Daniel J. Wilson (Northeastern University), Gregory D. Abowd (Northeastern University), Sauvik Das (Carnegie Mellon University)

Passive RFID is ubiquitous for key use-cases that include authentication, contactless payment, and location tracking. Yet, RFID chips can be read without users’ knowledge and consent, causing security and privacy concerns that reduce trust. To improve trust, we employed physically-intuitive design principles to create On-demand RFID (ORFID). ORFID’s antenna, disconnected by default, can only be re-connected by a user pressing and holding the tag. When the user lets go, the antenna automatically disconnects. ORFID helps users visibly examine the antenna’s connection: by pressing a liquid well, users can observe themselves pushing out a dyed, conductive liquid to fill the void between the antenna’s two bisected ends; by releasing their hold, they can see the liquid recede. A controlled evaluation with 17 participants showed that users trusted ORFID significantly more than a commodity RFID tag, both with and without an RFID-blocking wallet. Users attributed this increased trust to visible state inspection and intentional activation.

View More Papers

Mnemocrypt

André Pacteau, Antonino Vitale, Davide Balzarotti, Simone Aonzo (EURECOM)

Read More

My Past Dictates my Present: Relevance, Exposure, and Influence...

Shujaat Mirza, Christina Pöpper (New York University)

Read More

EMIRIS: Eavesdropping on Iris Information via Electromagnetic Side Channel

Wenhao Li (Shandong University), Jiahao Wang (Shandong University), Guoming Zhang (Shandong University), Yanni Yang (Shandong University), Riccardo Spolaor (Shandong University), Xiuzhen Cheng (Shandong University), Pengfei Hu (Shandong University)

Read More

DShield: Defending against Backdoor Attacks on Graph Neural Networks...

Hao Yu (National University of Defense Technology), Chuan Ma (Chongqing University), Xinhang Wan (National University of Defense Technology), Jun Wang (National University of Defense Technology), Tao Xiang (Chongqing University), Meng Shen (Beijing Institute of Technology, Beijing, China), Xinwang Liu (National University of Defense Technology)

Read More