Youngwook Do (JPMorganChase and Georgia Institute of Technology), Tingyu Cheng (Georgia Institute of Technology and University of Notre Dame), Yuxi Wu (Georgia Institute of Technology and Northeastern University), HyunJoo Oh(Georgia Institute of Technology), Daniel J. Wilson (Northeastern University), Gregory D. Abowd (Northeastern University), Sauvik Das (Carnegie Mellon University)

Passive RFID is ubiquitous for key use-cases that include authentication, contactless payment, and location tracking. Yet, RFID chips can be read without users’ knowledge and consent, causing security and privacy concerns that reduce trust. To improve trust, we employed physically-intuitive design principles to create On-demand RFID (ORFID). ORFID’s antenna, disconnected by default, can only be re-connected by a user pressing and holding the tag. When the user lets go, the antenna automatically disconnects. ORFID helps users visibly examine the antenna’s connection: by pressing a liquid well, users can observe themselves pushing out a dyed, conductive liquid to fill the void between the antenna’s two bisected ends; by releasing their hold, they can see the liquid recede. A controlled evaluation with 17 participants showed that users trusted ORFID significantly more than a commodity RFID tag, both with and without an RFID-blocking wallet. Users attributed this increased trust to visible state inspection and intentional activation.

View More Papers

IoT Software Updates: User Perspectives in the Context of...

S. P. Veed, S. M. Daftary, B. Singh, M. Rudra, S. Berhe (University of the Pacific), M. Maynard (Data Independence LLC) F. Khomh (Polytechnique Montreal)

Read More

A Formal Approach to Multi-Layered Privileges for Enclaves

Ganxiang Yang (Shanghai Jiao Tong University), Chenyang Liu (Shanghai Jiao Tong University), Zhen Huang (Shanghai Jiao Tong University), Guoxing Chen (Shanghai Jiao Tong University), Hongfei Fu (Shanghai Jiao Tong University), Yuanyuan Zhang (Shanghai Jiao Tong University), Haojin Zhu (Shanghai Jiao Tong University)

Read More

BumbleBee: Secure Two-party Inference Framework for Large Transformers

Wen-jie Lu (Ant Group), Zhicong Huang (Ant Group), Zhen Gu (Alibaba Group), Jingyu Li (Ant Group & Zhejiang University), Jian Liu (Zhejiang University), Cheng Hong (Ant Group), Kui Ren (Zhejiang University), Tao Wei (Ant Group), WenGuang Chen (Ant Group)

Read More

Explainable AI in Cybersecurity Operations: Lessons Learned from xAI...

Megan Nyre-Yu (Sandia National Laboratories), Elizabeth S. Morris (Sandia National Laboratories), Blake Moss (Sandia National Laboratories), Charles Smutz (Sandia National Laboratories), Michael R. Smith (Sandia National Laboratories)

Read More