Marc Roeschlin (ETH Zurich, Switzerland), Giovanni Camurati (ETH Zurich, Switzerland), Pascal Brunner (ETH Zurich, Switzerland), Mridula Singh (CISPA Helmholtz Center for Information Security), Srdjan Capkun (ETH Zurich, Switzerland)

A Controller Area Network (CAN bus) is a message-based protocol for intra-vehicle communication designed mainly with robustness and safety in mind. In real-world deployments, CAN bus does not offer common security features such as message authentication. Due to the fact that automotive suppliers need to guarantee interoperability, most manufacturers rely on a decade-old standard (ISO 11898) and changing the format by introducing MACs is impractical. Research has therefore suggested to address this lack of authentication with CAN bus Intrusion Detection Systems (IDSs) that augment the bus with separate modules. IDSs attribute messages to the respective sender by measuring physical-layer features of the transmitted frame. Those features are based on timings, voltage levels, transients—and, as of recently, Time Difference of Arrival (TDoA) measurements. In this work, we show that TDoA-based approaches presented in prior art are vulnerable to novel spoofing and poisoning attacks. We describe how those proposals can be fixed and present our own method called EdgeTDC. Unlike existing methods, EdgeTDC does not rely on Analog-to-digital converters (ADCs) with high sampling rate and high dynamic range to capture the signals at sample level granularity. Our method uses time-to-digital converters (TDCs) to detect the edges and measure their timings. Despite being inexpensive to implement, TDCs offer low latency, high location precision and the ability to measure every single edge (rising and falling) in a frame. Measuring each edge makes analog sampling redundant and allows the calculation of statistics that can even detect tampering with parts of a message. Through extensive experimentation, we show that EdgeTDC can successfully thwart masquerading attacks in the CAN system of modern vehicles.

View More Papers

BEAGLE: Forensics of Deep Learning Backdoor Attack for Better...

Siyuan Cheng (Purdue University), Guanhong Tao (Purdue University), Yingqi Liu (Purdue University), Shengwei An (Purdue University), Xiangzhe Xu (Purdue University), Shiwei Feng (Purdue University), Guangyu Shen (Purdue University), Kaiyuan Zhang (Purdue University), Qiuling Xu (Purdue University), Shiqing Ma (Rutgers University), Xiangyu Zhang (Purdue University)

Read More

A Case Study on Fuzzing Satellite Firmware

Tobias Scharnowski and Felix Buchmann (Ruhr-Universitat Bochum), Simon Woerner and Thorsten Holz (CISPA Helmholtz Center for Information Security) Presenter: Tobias Scharnowski

Read More

BinaryInferno: A Semantic-Driven Approach to Field Inference for Binary...

Jared Chandler (Tufts University), Adam Wick (Fastly), Kathleen Fisher (DARPA)

Read More