Diogo Barradas (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), Nuno Santos (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), Luis Rodrigues (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), Salvatore Signorello (LASIGE, Faculdade de Ciências, Universidade de Lisboa), Fernando M. V. Ramos (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), André Madeira (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa)

An emerging trend in network security consists in the adoption of programmable switches for performing various security tasks in large-scale, high-speed networks. However, since existing solutions are tailored to specific tasks, they cannot accommodate a growing variety of ML-based security applications, i.e., security-focused tasks that perform targeted flow classification based on packet size or inter-packet frequency distributions with the help of supervised machine learning algorithms. We present FlowLens, a system that leverages programmable switches to efficiently support multi-purpose ML-based security applications. FlowLens collects features of packet distributions at line speed and classifies flows directly on the switches, enabling network operators to re-purpose this measurement primitive at run-time to serve a different flow classification task. To cope with the resource constraints of programmable switches, FlowLens computes for each flow a memory-efficient representation of relevant features, named ``flow marker''. Despite its small size, a flow marker contains enough information to perform accurate flow classification. Since flow markers are highly customizable and application-dependent, FlowLens can automatically parameterize the flow marker generation guided by a multi-objective optimization process that can balance their size and accuracy. We evaluated our system in three usage scenarios: covert channel detection, website fingerprinting, and botnet chatter detection. We find that very small markers enable FlowLens to achieve a 150 fold increase in monitoring capacity for covert channel detection with an accuracy drop of only 3% when compared to collecting full packet distributions.

View More Papers

POSEIDON: Privacy-Preserving Federated Neural Network Learning

Sinem Sav (EPFL), Apostolos Pyrgelis (EPFL), Juan Ramón Troncoso-Pastoriza (EPFL), David Froelicher (EPFL), Jean-Philippe Bossuat (EPFL), Joao Sa Sousa (EPFL), Jean-Pierre Hubaux (EPFL)

Read More

Rosita: Towards Automatic Elimination of Power-Analysis Leakage in Ciphers

Madura A. Shelton (University of Adelaide), Niels Samwel (Radboud University), Lejla Batina (Radboud University), Francesco Regazzoni (University of Amsterdam and ALaRI – USI), Markus Wagner (University of Adelaide), Yuval Yarom (University of Adelaide and Data61)

Read More

TASE: Reducing Latency of Symbolic Execution with Transactional Memory

Adam Humphries (University of North Carolina), Kartik Cating-Subramanian (University of Colorado), Michael K. Reiter (Duke University)

Read More

More than a Fair Share: Network Data Remanence Attacks...

Leila Rashidi (University of Calgary), Daniel Kostecki (Northeastern University), Alexander James (University of Calgary), Anthony Peterson (Northeastern University), Majid Ghaderi (University of Calgary), Samuel Jero (MIT Lincoln Laboratory), Cristina Nita-Rotaru (Northeastern University), Hamed Okhravi (MIT Lincoln Laboratory), Reihaneh Safavi-Naini (University of Calgary)

Read More