Cheng Zhang (Hunan University), Yang Xu (Hunan University), Jianghao Tan (Hunan University), Jiajie An (Hunan University), Wenqiang Jin (Hunan University)

Clustered federated learning (CFL) serves as a promising framework to address the challenges of non-IID (non-Independent and Identically Distributed) data and heterogeneity in federated learning. It involves grouping clients into clusters based on the similarity of their data distributions or model updates. However, classic CFL frameworks pose severe threats to clients' privacy since the honest-but-curious server can easily know the bias of clients' data distributions (its preferences). In this work, we propose a privacy-enhanced clustered federated learning framework, MingledPie, aiming to resist against servers' preference profiling capabilities by allowing clients to be grouped into multiple clusters spontaneously. Specifically, within a given cluster, we mingled two types of clients in which a major type of clients share similar data distributions while a small portion of them do not (false positive clients). Such that, the CFL server fails to link clients' data preferences based on their belonged cluster categories. To achieve this, we design an indistinguishable cluster identity generation approach to enable clients to form clusters with a certain proportion of false positive members without the assistance of a CFL server. Meanwhile, training with mingled false positive clients will inevitably degrade the performances of the cluster's global model. To rebuild an accurate cluster model, we represent the mingled cluster models as a system of linear equations consisting of the accurate models and solve it. Rigid theoretical analyses are conducted to evaluate the usability and security of the proposed designs. In addition, extensive evaluations of MingledPie on six open-sourced datasets show that it defends against preference profiling attacks with an accuracy of 69.4% on average. Besides, the model accuracy loss is limited to between 0.02% and 3.00%.

View More Papers

LAMP: Lightweight Approaches for Latency Minimization in Mixnets with...

Mahdi Rahimi (KU Leuven), Piyush Kumar Sharma (University of Michigan), Claudia Diaz (KU Leuven)

Read More

Towards LLM-Assisted Vulnerability Detection and Repair for Open-Source 5G...

Rupam Patir (University at Buffalo), Qiqing Huang (University at Buffalo), Keyan Guo (University at Buffalo), Wanda Guo (Texas A&M University), Guofei Gu (Texas A&M University), Haipeng Cai (University at Buffalo), Hongxin Hu (University at Buffalo)

Read More

Ctrl+Alt+Deceive: Quantifying User Exposure to Online Scams

Platon Kotzias (Norton Research Group, BforeAI), Michalis Pachilakis (Norton Research Group, Computer Science Department University of Crete), Javier Aldana Iuit (Norton Research Group), Juan Caballero (IMDEA Software Institute), Iskander Sanchez-Rola (Norton Research Group), Leyla Bilge (Norton Research Group)

Read More

CounterSEVeillance: Performance-Counter Attacks on AMD SEV-SNP

Stefan Gast (Graz University of Technology), Hannes Weissteiner (Graz University of Technology), Robin Leander Schröder (Fraunhofer SIT, Darmstadt, Germany and Fraunhofer Austria, Vienna, Austria), Daniel Gruss (Graz University of Technology)

Read More