Cheng Zhang (Hunan University), Yang Xu (Hunan University), Jianghao Tan (Hunan University), Jiajie An (Hunan University), Wenqiang Jin (Hunan University)

Clustered federated learning (CFL) serves as a promising framework to address the challenges of non-IID (non-Independent and Identically Distributed) data and heterogeneity in federated learning. It involves grouping clients into clusters based on the similarity of their data distributions or model updates. However, classic CFL frameworks pose severe threats to clients' privacy since the honest-but-curious server can easily know the bias of clients' data distributions (its preferences). In this work, we propose a privacy-enhanced clustered federated learning framework, MingledPie, aiming to resist against servers' preference profiling capabilities by allowing clients to be grouped into multiple clusters spontaneously. Specifically, within a given cluster, we mingled two types of clients in which a major type of clients share similar data distributions while a small portion of them do not (false positive clients). Such that, the CFL server fails to link clients' data preferences based on their belonged cluster categories. To achieve this, we design an indistinguishable cluster identity generation approach to enable clients to form clusters with a certain proportion of false positive members without the assistance of a CFL server. Meanwhile, training with mingled false positive clients will inevitably degrade the performances of the cluster's global model. To rebuild an accurate cluster model, we represent the mingled cluster models as a system of linear equations consisting of the accurate models and solve it. Rigid theoretical analyses are conducted to evaluate the usability and security of the proposed designs. In addition, extensive evaluations of MingledPie on six open-sourced datasets show that it defends against preference profiling attacks with an accuracy of 69.4% on average. Besides, the model accuracy loss is limited to between 0.02% and 3.00%.

View More Papers

Onion Franking: Abuse Reports for Mix-Based Private Messaging

Matthew Gregoire (University of North Carolina at Chapel Hill), Margaret Pierce (University of North Carolina at Chapel Hill), Saba Eskandarian (University of North Carolina at Chapel Hill)

Read More

“Where Are We On Cyber?” – A Qualitative Study...

Jens Christian Opdenbusch (Ruhr University Bochum), Jonas Hielscher (Ruhr University Bochum), M. Angela Sasse (Ruhr University Bochum, University College London)

Read More

A Large-Scale Measurement Study of the PROXY Protocol and...

Stijn Pletinckx (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara), Giovanni Vigna (University of California, Santa Barbara)

Read More

Generating API Parameter Security Rules with LLM for API...

Jinghua Liu (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Yi Yang (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Kai Chen (Institute of Information Engineering, Chinese Academy of…

Read More