Anxiao He (Zhejiang University), Jiandong Fu (Zhejiang University), Kai Bu (Zhejiang University), Ruiqi Zhou (Zhejiang University), Chenlu Miao (Zhejiang University), Kui Ren (Zhejiang University)

Path validation has long been explored as a fundamental solution to secure future Internet architectures. It enables end-hosts to specify forwarding paths for their traffic and to verify whether the traffic follows the specified paths. In comparison with the current Internet architecture that keeps packet forwarding uncontrolled and transparent to end-hosts, path validation benefits end-hosts with flexibility, security, and privacy. The key design enforces routers to embed their credentials into cryptographic proofs in packet headers. Such proofs require sufficiently complex computation to guarantee unforgeability. This imposes an inevitable barrier on validation efficiency for a single packet. In this paper, we propose aggregate validation to implement path validation in a group-wise way. Amortizing overhead across packets in a group, aggregate validation promises higher validation efficiency without sacrificing security. We implement aggregation validation through Symphony, with various design techniques integrated and security properties formally proved. In comparison with state-of-the-art EPIC, Symphony speeds up packet processing by 3.78 ×∼ 18.40 × and increases communication throughput by 1.13 ×∼ 6.11 ×.

View More Papers

IdleLeak: Exploiting Idle State Side Effects for Information Leakage

Fabian Rauscher (Graz University of Technology), Andreas Kogler (Graz University of Technology), Jonas Juffinger (Graz University of Technology), Daniel Gruss (Graz University of Technology)

Read More

Work-in-Progress: Manifest V3 Unveiled: Navigating the New Era of...

Nikolaos Pantelaios and Alexandros Kapravelos (North Carolina State University)

Read More

WIP: Towards Practical LiDAR Spoofing Attack against Vehicles Driving...

Ryo Suzuki (Keio University), Takami Sato (University of California, Irvine), Yuki Hayakawa, Kazuma Ikeda, Ozora Sako, Rokuto Nagata (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

Read More

Bernoulli Honeywords

Ke Coby Wang (Duke University), Michael K. Reiter (Duke University)

Read More