Huiling Chen (College of Computer Science and Electronic Engineering, Hunan University, Changsha, China), Wenqiang Jin (College of Computer Science and Electronic Engineering, Hunan University, Changsha, China), Yupeng Hu (College of Computer Science and Electronic Engineering, Hunan University, Changsha, China), Zhenyu Ning (College of Computer Science and Electronic Engineering, Hunan University, Changsha, China), Kenli Li (College of Computer Science and Electronic Engineering, National Supercomputing Center in Changsha, Hunan University), Zheng Qin (College of Computer Science and Electronic Engineering, Hunan University, Changsha, China), Mingxing Duan (College of Computer Science and Electronic Engineering, National Supercomputing Center in Changsha, Hunan University), Yong Xie (Nanjing University of Posts and Telecommunications, Nanjing, China), Daibo Liu (College of Computer Science and Electronic Engineering, Hunan University, Changsha, China), Ming Li (The University of Texas at Arlington, USA)

Audio eavesdropping poses serious threats to user privacy in daily mobile usage scenarios such as phone calls, voice messaging, and confidential meetings. Headphones are thus favored by mobile users as it provide physical sound isolation to protect audio privacy. However, our paper presents the first proof-of-concept system, Periscope, that demonstrates the vulnerabilities of headphone-plugged mobile devices. The system shows that unintentionally leaked electromagnetic radiations (EMR) from mobile devices' audio amplifiers can be exploited as an effective side-channel in recovering victim's audio sounds. Additionally, plugged headphones act as antennas that enhance the EMR strengths, making them easily measurable at long distances. Our feasibility studies and hardware analysis further reveal that EMRs are highly correlated with the device's audio inputs but suffer from signal distortions and ambient noises, making recovering audio sounds extremely challenging. To address this challenge, we develop signal processing techniques with a spectrogram clustering scheme that clears noises and distortions, enabling EMRs to be converted back to audio sounds. Our attack prototype, comparable in size to hidden voice recorders, successfully recovers victims' private audio sounds with a word error rate (WER) as low as 7.44% across 11 mobile devices and 6 headphones. The recovery results are recognizable to natural human hearing and online speech-to-text tools, and the system is robust against a wide range of attack scenario changes. We also reported the Periscope to 6 leading mobile manufacturers.

View More Papers

Facilitating Threat Modeling by Leveraging Large Language Models

Isra Elsharef, Zhen Zeng (University of Wisconsin-Milwaukee), Zhongshu Gu (IBM Research)

Read More

Understanding the Implementation and Security Implications of Protective DNS...

Mingxuan Liu (Zhongguancun Laboratory; Tsinghua University), Yiming Zhang (Tsinghua University), Xiang Li (Tsinghua University), Chaoyi Lu (Tsinghua University), Baojun Liu (Tsinghua University), Haixin Duan (Tsinghua University; Zhongguancun Laboratory), Xiaofeng Zheng (Institute for Network Sciences and Cyberspace, Tsinghua University; QiAnXin Technology Research Institute & Legendsec Information Technology (Beijing) Inc.)

Read More

PANDORA: Jailbreak GPTs by Retrieval Augmented Generation Poisoning

Gelei Deng, Yi Liu (Nanyang Technological University), Yuekang Li (The University of New South Wales), Wang Kailong(Huazhong University of Science and Technology), Tianwei Zhang, Yang Liu (Nanyang Technological University)

Read More

50 Shades of Support: A Device-Centric Analysis of Android...

Abbas Acar (Florida International University), Güliz Seray Tuncay (Google), Esteban Luques (Florida International University), Harun Oz (Florida International University), Ahmet Aris (Florida International University), Selcuk Uluagac (Florida International University)

Read More