Jiameng Shi (University of Georgia), Wenqiang Li (Independent Researcher), Wenwen Wang (University of Georgia), Le Guan (University of Georgia)

Although numerous dynamic testing techniques have been developed, they can hardly be directly applied to firmware of deeply embedded (e.g., microcontroller-based) devices due to the tremendously different runtime environment and restricted resources on these devices. This work tackles these challenges by leveraging the unique position of microcontroller devices during firmware development. That is, firmware developers have to rely on a powerful engineering workstation that connects to the target device to program and debug code. Therefore, we develop a decoupled firmware testing framework named IPEA, which shifts the overhead of resource-intensive analysis tasks from the microcontroller to the workstation. Only lightweight “needle probes” are left in the firmware to collect internal execution information without processing it. We also instantiated this framework with a sanitizer based on pointer capability (IPEA-San) and a greybox fuzzer (IPEA-Fuzz). By comparing IPEA-San with a port of AddressSanitizer for microcontrollers, we show that IPEA-San reduces memory overhead by 62.75% in real-world firmware with better detection accuracy. Combining IPEA-Fuzz with IPEA-San, we found 7 zero-day bugs in popular IoT libraries (3) and peripheral driver code (4).

View More Papers

Commercial Vehicle Electronic Logging Device Security: Unmasking the Risk...

Jake Jepson, Rik Chatterjee, Jeremy Daily (Colorado State University)

Read More

Not your Type! Detecting Storage Collision Vulnerabilities in Ethereum...

Nicola Ruaro (University of California, Santa Barbara), Fabio Gritti (University of California, Santa Barbara), Robert McLaughlin (University of California, Santa Barbara), Ilya Grishchenko (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara), Giovanni Vigna (University of California, Santa Barbara)

Read More

BliMe: Verifiably Secure Outsourced Computation with Hardware-Enforced Taint Tracking

Hossam ElAtali (University of Waterloo), Lachlan J. Gunn (Aalto University), Hans Liljestrand (University of Waterloo), N. Asokan (University of Waterloo, Aalto University)

Read More

REPLICAWATCHER: Training-less Anomaly Detection in Containerized Microservices

Asbat El Khairi (University of Twente), Marco Caselli (Siemens AG), Andreas Peter (University of Oldenburg), Andrea Continella (University of Twente)

Read More