Imani N. S. Munyaka (University of California, San Diego), Daniel A Delgado, Juan Gilbert, Jaime Ruiz, Patrick Traynor (University of Florida)

Telephone carriers and third-party developers have created technical solutions to detect and notify consumers of spam calls. The goal of this technology is to help users make decisions about incoming calls and reduce the negative effects of spam calls on finances and daily life. Although useful, this technology has varying accuracy due to technical limitations. In this study, we conduct design interviews, a call response diary study, and an MTurk survey (N=143) to explore the relationship between warning accuracy and callee decision-making for incoming calls. Our results suggest that previous call experience can lead to incomplete mental models of how Caller ID works. Additionally, we find that false alarms and missed detection do not impact call response but can influence user expectations of the call. Since adversaries can use mismatched expectations to their advantage, we recommend using warning design characteristics that align with user expectations under detection accuracy constraints.

View More Papers

AnonPSI: An Anonymity Assessment Framework for PSI

Bo Jiang (TikTok Inc.), Jian Du (TikTok Inc.), Qiang Yan (TikTok Inc.)

Read More

dRR: A Decentralized, Scalable, and Auditable Architecture for RPKI...

Yingying Su (Tsinghua university), Dan Li (Tsinghua university), Li Chen (Zhongguancun Laboratory), Qi Li (Tsinghua university), Sitong Ling (Tsinghua University)

Read More

NODLINK: An Online System for Fine-Grained APT Attack Detection...

Shaofei Li (Key Laboratory of High-Confidence Software Technologies (MOE), School of Computer Science, Peking University), Feng Dong (Huazhong University of Science and Technology), Xusheng Xiao (Arizona State University), Haoyu Wang (Huazhong University of Science and Technology), Fei Shao (Case Western Reserve University), Jiedong Chen (Sangfor Technologies Inc.), Yao Guo (Key Laboratory of High-Confidence Software Technologies…

Read More

A Cross-Verification Approach with Publicly Available Map for Detecting...

Takami Sato, Ningfei Wang (University of California, Irvine), Yueqiang Cheng (NIO Security Research), Qi Alfred Chen (University of California, Irvine)

Read More