Wenhao Li (Shandong University), Jiahao Wang (Shandong University), Guoming Zhang (Shandong University), Yanni Yang (Shandong University), Riccardo Spolaor (Shandong University), Xiuzhen Cheng (Shandong University), Pengfei Hu (Shandong University)

Iris recognition is one of the most secure biometric methods due to the uniqueness and stability of iris patterns, as well as their resistance to forgery. Consequently, it is frequently used in high-security authentication scenarios. However, systems using Near-Infrared (NIR) sensors may expose the iris information of users, leading to significant privacy risks. Our research found that the electromagnetic (EM) emissions generated during data transmission of NIR sensors are closely related to iris data. Based on this observation, we propose EMIRIS, a method for reconstructing the iris information using EM side channels. By deconstructing the digital signal transmission format of the NIR sensors and the mapping mechanism of the iris data matrix, we can reconstruct iris information from EM signals and convert it into iris images. To improve the quality of the reconstructed iris, we model the denoising and restoration of iris texture details as a linear inverse problem and tailor a diffusion model to solve it. Extensive experimental evaluations show that EMIRIS can effectively reconstruct iris information from commercial iris recognition devices, achieving an average SSIM of 0.511 and an average FID of 7.25. Even more concerning, these reconstructed irises can effectively spoof the classical iris recognition model with an average success rate of 53.47% on more than 3,000 iris samples from 50 different users.

View More Papers

Five Word Password Composition Policy

Sirvan Almasi (Imperial College London), William J. Knottenbelt (Imperial College London)

Read More

Probe-Me-Not: Protecting Pre-trained Encoders from Malicious Probing

Ruyi Ding (Northeastern University), Tong Zhou (Northeastern University), Lili Su (Northeastern University), Aidong Adam Ding (Northeastern University), Xiaolin Xu (Northeastern University), Yunsi Fei (Northeastern University)

Read More

Interventional Root Cause Analysis of Failures in Multi-Sensor Fusion...

Shuguang Wang (City University of Hong Kong), Qian Zhou (City University of Hong Kong), Kui Wu (University of Victoria), Jinghuai Deng (City University of Hong Kong), Dapeng Wu (City University of Hong Kong), Wei-Bin Lee (Information Security Center, Hon Hai Research Institute), Jianping Wang (City University of Hong Kong)

Read More

Generating API Parameter Security Rules with LLM for API...

Jinghua Liu (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Yi Yang (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Kai Chen (Institute of Information Engineering, Chinese Academy of…

Read More