Wenhao Li (Shandong University), Jiahao Wang (Shandong University), Guoming Zhang (Shandong University), Yanni Yang (Shandong University), Riccardo Spolaor (Shandong University), Xiuzhen Cheng (Shandong University), Pengfei Hu (Shandong University)

Iris recognition is one of the most secure biometric methods due to the uniqueness and stability of iris patterns, as well as their resistance to forgery. Consequently, it is frequently used in high-security authentication scenarios. However, systems using Near-Infrared (NIR) sensors may expose the iris information of users, leading to significant privacy risks. Our research found that the electromagnetic (EM) emissions generated during data transmission of NIR sensors are closely related to iris data. Based on this observation, we propose EMIRIS, a method for reconstructing the iris information using EM side channels. By deconstructing the digital signal transmission format of the NIR sensors and the mapping mechanism of the iris data matrix, we can reconstruct iris information from EM signals and convert it into iris images. To improve the quality of the reconstructed iris, we model the denoising and restoration of iris texture details as a linear inverse problem and tailor a diffusion model to solve it. Extensive experimental evaluations show that EMIRIS can effectively reconstruct iris information from commercial iris recognition devices, achieving an average SSIM of 0.511 and an average FID of 7.25. Even more concerning, these reconstructed irises can effectively spoof the classical iris recognition model with an average success rate of 53.47% on more than 3,000 iris samples from 50 different users.

View More Papers

Beyond Classification: Inferring Function Names in Stripped Binaries via...

Linxi Jiang (The Ohio State University), Xin Jin (The Ohio State University), Zhiqiang Lin (The Ohio State University)

Read More

Statically Discover Cross-Entry Use-After-Free Vulnerabilities in the Linux Kernel

Hang Zhang (Indiana University Bloomington), Jangha Kim (The Affiliated Institute of ETRI, ROK), Chuhong Yuan (Georgia Institute of Technology), Zhiyun Qian (University of California, Riverside), Taesoo Kim (Georgia Institute of Technology)

Read More

Wallbleed: A Memory Disclosure Vulnerability in the Great Firewall...

Shencha Fan (GFW Report), Jackson Sippe (University of Colorado Boulder), Sakamoto San (Shinonome Lab), Jade Sheffey (UMass Amherst), David Fifield (None), Amir Houmansadr (UMass Amherst), Elson Wedwards (None), Eric Wustrow (University of Colorado Boulder)

Read More