Andrick Adhikari (University of Denver), Sanchari Das (University of Denver), Rinku Dewri (University of Denver)

The effectiveness of natural language privacy policies continues to be clouded by concerns surrounding their readability, ambiguity, and accessibility. Despite multiple design alternatives proposed over the years, natural language policies are still the primary format for organizations to communicate privacy practices to users. Current NLP techniques are often drawn towards generating high-level overviews, or specialized towards a single aspect of consumer privacy communication; the flexibility to apply them for multiple tasks is missing. To this aid, we present PolicyPulse, an information extraction pipeline designed to process privacy policies into usable formats. PolicyPulse employs a specialized XLNet classifier, and leverages a BERT-based model for semantic role labeling to extract phrases from policy sentences, while maintaining the semantic relations between predicates and their arguments. Our classification model was trained on 13,946 manually annotated semantic frames, and achieves a F1-score of 0.97 on identifying privacy practices communicated using clauses within a sentence. We emphasize the versatility of PolicyPulse through prototype applications to support requirement-driven policy presentations, question-answering systems, and privacy preference checking.

View More Papers

Securing BGP ASAP: ASPA and other Post-ROV Defenses

Justin Furuness (University of Connecticut), Cameron Morris (University of Connecticut), Reynaldo Morillo (University of Connecticut), Arvind Kasiliya (University of Connecticut), Bing Wang (University of Connecticut), Amir Herzberg (University of Connecticut)

Read More

The Philosopher’s Stone: Trojaning Plugins of Large Language Models

Tian Dong (Shanghai Jiao Tong University), Minhui Xue (CSIRO's Data61), Guoxing Chen (Shanghai Jiao Tong University), Rayne Holland (CSIRO's Data61), Yan Meng (Shanghai Jiao Tong University), Shaofeng Li (Southeast University), Zhen Liu (Shanghai Jiao Tong University), Haojin Zhu (Shanghai Jiao Tong University)

Read More

HADES Attack: Understanding and Evaluating Manipulation Risks of Email...

Ruixuan Li (Tsinghua University), Chaoyi Lu (Tsinghua University), Baojun Liu (Tsinghua University;Zhongguancun Laboratory), Yunyi Zhang (Tsinghua University), Geng Hong (Fudan University), Haixin Duan (Tsinghua University;Zhongguancun Laboratory), Yanzhong Lin (Coremail Technology Co. Ltd), Qingfeng Pan (Coremail Technology Co. Ltd), Min Yang (Fudan University), Jun Shao (Zhejiang Gongshang University)

Read More

Passive Inference Attacks on Split Learning via Adversarial Regularization

Xiaochen Zhu (National University of Singapore & Massachusetts Institute of Technology), Xinjian Luo (National University of Singapore & Mohamed bin Zayed University of Artificial Intelligence), Yuncheng Wu (Renmin University of China), Yangfan Jiang (National University of Singapore), Xiaokui Xiao (National University of Singapore), Beng Chin Ooi (National University of Singapore)

Read More