Sirvan Almasi (Imperial College London), William J. Knottenbelt (Imperial College London)

Password composition policies (PCPs) are critical security rules that govern how users create passwords for online authentication. Despite passwords remaining the primary authentication method online, there is significant disagreement among experts, regulatory bodies, and researchers about what constitutes effective password policies. This lack of consensus has led to high variance in PCP implementations across websites, leaving both developers and users uncertain. Current approaches lack a theoretical foundation for evaluating and comparing different password composition policies. We show that a structure-based policy, such as the three-random words recommended by UK’s National Cyber Security Centre (NCSC), can improve password security. We demonstrate this using an empirical evaluation of labelled password datasets and a new theoretical framework. Using these methods we demonstrate the feasibility and security of multi-word password policy and extend the NCSC’s recommendation to five words to account for nonuniform word selection. These findings provide an evidence-based framework for password policy development and suggest that current web authentication systems should adjust their minimum word requirements upward while maintaining usability.

View More Papers

Recurrent Private Set Intersection for Unbalanced Databases with Cuckoo...

Eduardo Chielle (New York University Abu Dhabi), Michail Maniatakos (New York University Abu Dhabi)

Read More

SCAMMAGNIFIER: Piercing the Veil of Fraudulent Shopping Website Campaigns

Marzieh Bitaab (Arizona State University), Alireza Karimi (Arizona State University), Zhuoer Lyu (Arizona State University), Adam Oest (Amazon), Dhruv Kuchhal (Amazon), Muhammad Saad (X Corp.), Gail-Joon Ahn (Arizona State University), Ruoyu Wang (Arizona State University), Tiffany Bao (Arizona State University), Yan Shoshitaishvili (Arizona State University), Adam Doupé (Arizona State University)

Read More

URVFL: Undetectable Data Reconstruction Attack on Vertical Federated Learning

Duanyi Yao (Hong Kong University of Science and Technology), Songze Li (Southeast University), Xueluan Gong (Wuhan University), Sizai Hou (Hong Kong University of Science and Technology), Gaoning Pan (Hangzhou Dianzi University)

Read More

YuraScanner: Leveraging LLMs for Task-driven Web App Scanning

Aleksei Stafeev (CISPA Helmholtz Center for Information Security), Tim Recktenwald (CISPA Helmholtz Center for Information Security), Gianluca De Stefano (CISPA Helmholtz Center for Information Security), Soheil Khodayari (CISPA Helmholtz Center for Information Security), Giancarlo Pellegrino (CISPA Helmholtz Center for Information Security)

Read More