Shiqing Ma (Purdue University), Yingqi Liu (Purdue University), Guanhong Tao (Purdue University), Wen-Chuan Lee (Purdue University), Xiangyu Zhang (Purdue University)

Deep Neural Networks (DNN) are vulnerable to adversarial samples that
are generated by perturbing correctly classified inputs to cause DNN
models to misbehave (e.g., misclassification). This can potentially
lead to disastrous consequences especially in security-sensitive
applications. Existing defense and detection techniques work well for
specific attacks under various assumptions (e.g., the set of possible
attacks are known beforehand). However, they are not sufficiently
general to protect against a broader range of attacks. In this paper,
we analyze the internals of DNN models under various attacks and
identify two common exploitation channels: the provenance channel and
the activation value distribution channel. We then propose a novel
technique to extract DNN invariants and use them to perform runtime
adversarial sample detection. Our experimental results of 11 different
kinds of attacks on popular datasets including ImageNet and 13 models
show that our technique can effectively detect all these attacks
(over 90% accuracy) with limited false positives. We also compare it
with three state-of-the-art techniques including the Local Intrinsic
Dimensionality (LID) based method, denoiser based methods (i.e.,
MagNet and HGD), and the prediction inconsistency based approach
(i.e., feature squeezing). Our experiments show promising results.

View More Papers

IoTGuard: Dynamic Enforcement of Security and Safety Policy in...

Z. Berkay Celik (Penn State University), Gang Tan (Penn State University), Patrick McDaniel (Penn State University)

Read More

ConcurORAM: High-Throughput Stateless Parallel Multi-Client ORAM

Anrin Chakraborti (Stony Brook University), Radu Sion (Stony Brook University)

Read More

The Crux of Voice (In)Security: A Brain Study of...

Ajaya Neupane (University of California Riverside), Nitesh Saxena (University of Alabama at Birmingham), Leanne Hirshfield (Syracuse University), Sarah Elaine Bratt (Syracuse University)

Read More

Master of Web Puppets: Abusing Web Browsers for Persistent...

Panagiotis Papadopoulos (FORTH-ICS, Greece), Panagiotis Ilia (FORTH-ICS), Michalis Polychronakis (Stony Brook University, USA), Evangelos P. Markatos (FORTH-ICS, Greece), Sotiris Ioannidis (FORTH-ICS, Greece), Giorgos Vasiliadis (FORTH-ICS, Greece)

Read More