Alexander Sjösten (Chalmers University of Technology), Steven Van Acker (Chalmers University of Technology), Pablo Picazo-Sanchez (Chalmers University of Technology), Andrei Sabelfeld (Chalmers University of Technology)

Browser extensions enable rich experience for the users of today's web. Being
deployed with elevated privileges, extensions are given the power to overrule
web pages. As a result, web pages often seek to detect the installed extensions,
sometimes for benign adoption of their behavior but sometimes as part of
privacy-violating user fingerprinting.
Researchers have studied a class of attacks that allow detecting extensions by
probing for Web Accessible Resources (WARs) via URLs that include public
extension IDs.
Realizing privacy risks associated with WARs, Firefox has recently moved to
randomize a browser extension's ID, prompting the Chrome team to plan for
following the same path.
However, rather than mitigating the issue, the randomized IDs can in fact
exacerbate the extension detection problem, enabling attackers to use a
randomized ID as a reliable fingerprint of a user.
We study a class of extension revelation attacks, where extensions reveal
themselves by injecting their code on web pages.
We demonstrate how a combination of revelation and probing can uniquely identify
90% out of all extensions injecting content, in spite of a randomization scheme.
We perform a series of large-scale studies to estimate possible implications of
both classes of attacks.
As a countermeasure, we propose a browser-based mechanism that enables control
over which extensions are loaded on which web pages and present a proof of
concept implementation which blocks both classes of attacks.

View More Papers

Stealthy Adversarial Perturbations Against Real-Time Video Classification Systems

Shasha Li (University of California Riverside), Ajaya Neupane (University of California Riverside), Sujoy Paul (University of California Riverside), Chengyu Song (University of California Riverside), Srikanth V. Krishnamurthy (University of California Riverside), Amit K. Roy Chowdhury (University of California Riverside), Ananthram Swami (United States Army Research Laboratory)

Read More

Component-Based Formal Analysis of 5G-AKA: Channel Assumptions and Session...

Cas Cremers (CISPA Helmholtz Center for Information Security), Martin Dehnel-Wild (University of Oxford)

Read More

Adversarial Attacks Against Automatic Speech Recognition Systems via Psychoacoustic...

Lea Schönherr (Ruhr University Bochum), Katharina Kohls (Ruhr University Bochum), Steffen Zeiler (Ruhr University Bochum), Thorsten Holz (Ruhr University Bochum), Dorothea Kolossa (Ruhr University Bochum)

Read More

Privacy Attacks to the 4G and 5G Cellular Paging...

Syed Rafiul Hussain (Purdue University), Mitziu Echeverria (University of Iowa), Omar Chowdhury (University of Iowa), Ninghui Li (Purdue University), Elisa Bertino (Purdue University)

Read More