Athanasios Andreou (EURECOM), Márcio Silva (UFMG), Fabrício Benevenuto (UFMG), Oana Goga (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG), Patrick Loiseau (Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG & MPI-SWS), Alan Mislove (Northeastern University)

The Facebook advertising platform has been subject to a number of controversies in the past years regarding privacy violations, lack of transparency, as well as its capacity to be used by dishonest actors for discrimination or propaganda. In this study, we aim to provide a better understanding of the Facebook advertising ecosystem, focusing on how it is being used by advertisers. We first analyze the set of advertisers and then investigate how those advertisers are targeting users and customizing ads via the platform. Our analysis is based on the data we collected from over 600 real-world users via a browser extension that collects the ads our users receive when they browse their Facebook timeline, as well as the explanations for why users received these ads.

Our results reveal that users are targeted by a wide range of advertisers (e.g., from popular to niche advertisers); that a non-negligible fraction of advertisers are part of potentially sensitive categories such as news and politics, health or religion; that a significant number of advertisers employ targeting strategies that could be either invasive or opaque; and that many advertisers use a variety of targeting parameters and ad texts. Overall, our work emphasizes the need for better mechanisms to audit ads and advertisers in social media and provides an overview of the platform usage that can help move towards such mechanisms.

View More Papers

One Engine To Serve 'em All: Inferring Taint Rules...

Zheng Leong Chua (National University of Singapore), Yanhao Wang (TCA/SKLCS, Institute of Software, Chinese Academy of Sciences), Teodora Baluta (National University of Singapore), Prateek Saxena (National University of Singapore), Zhenkai Liang (National University of Singapore), Purui Su (TCA/SKLCS, Institute of Software, Chinese Academy of Sciences)

Read More

RFDIDS: Radio Frequency-based Distributed Intrusion Detection System for the...

Tohid Shekari (ECE, Georgia Tech), Christian Bayens (ECE, Georgia Tech), Morris Cohen (ECE, Georgia Tech), Lukas Graber (ECE, Georgia Tech), Raheem Beyah (ECE, Georgia Tech)

Read More

PeriScope: An Effective Probing and Fuzzing Framework for the...

Dokyung Song (University of California, Irvine), Felicitas Hetzelt (Technical University of Berlin), Dipanjan Das (University of California, Santa Barbara), Chad Spensky (University of California, Santa Barbara), Yeoul Na (University of California, Irvine), Stijn Volckaert (University of California, Irvine and KU Leuven), Giovanni Vigna (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara),…

Read More

Robust Performance Metrics for Authentication Systems

Shridatt Sugrim (Rutgers University), Can Liu (Rutgers University), Meghan McLean (Rutgers University), Janne Lindqvist (Rutgers University)

Read More