Zhuoran Liu (Radboud university), Niels Samwel (Radboud University), Léo Weissbart (Radboud University), Zhengyu Zhao (Radboud University), Dirk Lauret (Radboud University), Lejla Batina (Radboud University), Martha Larson (Radboud University)

We introduce emph{screen gleaning}, a TEMPEST attack in which the screen of a mobile device is read without a visual line of sight, revealing sensitive information displayed on the phone screen. The screen gleaning attack uses an antenna and a software-defined radio (SDR) to pick up the electromagnetic signal that the device sends to the screen to display, e.g., a message with a security code. This special equipment makes it possible to recreate the signal as a gray-scale image, which we refer to as an emph{emage}. Here, we show that it can be used to read a security code. The screen gleaning attack is challenging because it is often impossible for a human viewer to interpret the emage directly. We show that this challenge can be addressed with machine learning, specifically, a deep learning classifier. Screen gleaning will become increasingly serious as SDRs and deep learning continue to rapidly advance. In this paper, we demonstrate the security code attack and we propose a testbed that provides a standard setup in which screen gleaning could be tested with different attacker models. Finally, we analyze the dimensions of screen gleaning attacker models and discuss possible countermeasures with the potential to address them.

View More Papers

Detecting Tor Bridge from Sampled Traffic in Backbone Networks

Hua Wu (School of Cyber Science & Engineering and Key Laboratory of Computer Network and Information Integration Southeast University, Ministry of Education, Jiangsu Nanjing, Purple Mountain Laboratories for Network and Communication Security (Nanjing, Jiangsu)), Shuyi Guo, Guang Cheng, Xiaoyan Hu (School of Cyber Science & Engineering and Key Laboratory of Computer Network and Information Integration…

Read More

Censored Planet: An Internet-wide, Longitudinal Censorship Observatory

R. Sundara Raman, P. Shenoy, K. Kohls, and R. Ensafi (University of Michigan)

Read More

Taking a Closer Look at the Alexa Skill Ecosystem

Christopher Lentzsch (Ruhr-Universität Bochum), Anupam Das (North Carolina State University)

Read More

Panel – Experiment Artifact Sharing: Challenges and Solutions

Moderator: Laura Tinnel (SRI International) Panelists: Clémentine Maurice (CNRS, IRIS); Martin Rosso (Eindhoven University of Technology); Eric Eide (U. Utah)

Read More