Matthew Smith (University of Oxford), Martin Strohmeier (University of Oxford), Jonathan Harman (Vrije Universiteit Amsterdam), Vincent Lenders (armasuisse Science and Technology), Ivan Martinovic (University of Oxford)

Many wireless communications systems found in aircraft lack standard security mechanisms, leaving them fundamentally vulnerable to attack. With affordable software-defined radios available, a novel threat has emerged, allowing a wide range of attackers to easily interfere with wireless avionic systems. Whilst these vulnerabilities are known, concrete attacks that exploit them are still novel and not yet well understood. This is true in particular with regards to their kinetic impact on the handling of the attacked aircraft and consequently its safety. To investigate this, we invited 30 Airbus A320 type-rated pilots to fly simulator scenarios in which they were subjected to attacks on their avionics. We implement and analyze novel wireless attacks on three safety-related systems: Traffic Collision Avoidance System (TCAS), Ground Proximity Warning System (GPWS) and the Instrument Landing System (ILS). We found that all three analyzed attack scenarios created significant control impact and cost of disruption through turnarounds, avoidance manoeuvres, and diversions. They further increased workload, distrust in the affected system, and in 38% of cases caused the attacked safety system to be switched off entirely. All pilots felt the scenarios were useful, with 93.3% feeling that specific simulator training for wireless attacks could be valuable.

View More Papers

Cross-Origin State Inference (COSI) Attacks: Leaking Web Site States...

Avinash Sudhodanan (IMDEA Software Institute), Soheil Khodayari (CISPA Helmholtz Center for Information Security), Juan Caballero (IMDEA Software Institute)

Read More

SODA: A Generic Online Detection Framework for Smart Contracts

Ting Chen (University of Electronic Science and Technology of China), Rong Cao (University of Electronic Science and Technology of China),...

Read More

FUSE: Finding File Upload Bugs via Penetration Testing

Taekjin Lee (KAIST, ETRI), Seongil Wi (KAIST), Suyoung Lee (KAIST), Sooel Son (KAIST)

Read More

HFL: Hybrid Fuzzing on the Linux Kernel

Kyungtae Kim (Purdue University), Dae R. Jeong (KAIST), Chung Hwan Kim (NEC Labs America), Yeongjin Jang (Oregon State University), Insik...

Read More