In autonomous vehicle systems – whether ground or aerial – vehicles and infrastructure-level units communicate among each other continually to ensure safe and efficient autonomous operations. However, different attack scenarios might arise in such environments when a device in the network cannot physically pinpoint the actual transmitter of a certain message. For example, a compromised or a malicious vehicle could send a message with a fabricated location to appear as if it is in the location of another legitimate vehicle, or fabricate multiple messages with fake identities to alter the behavior of other vehicles/infrastructure units and cause traffic congestion or accidents. In this paper, we propose a Vision-Based Two-Factor Authentication and Localization Scheme for Autonomous Vehicles. The scheme leverages the vehicles’ light sources and cameras to establish an “Optical Camera Communication (OCC)” channel providing an auxiliary channel between vehicles to visually authenticate and localize the transmitter of messages that are sent over Radio Frequency (RF) channels. Additionally, we identify possible attacks against the proposed scheme as well as mitigation strategies.

View More Papers

Demo #8: Security of Camera-based Perception for Autonomous Driving...

Christopher DiPalma, Ningfei Wang, Takami Sato, and Qi Alfred Chen (UC Irvine)

Read More

The Bluetooth CYBORG: Analysis of the Full Human-Machine Passkey...

Michael Troncoso (Naval Postgraduate School), Britta Hale (Naval Postgraduate School)

Read More

Cross-National Study on Phishing Resilience

Shakthidhar Reddy Gopavaram (Indiana University), Jayati Dev (Indiana University), Marthie Grobler (CSIRO’s Data61), DongInn Kim (Indiana University), Sanchari Das (University...

Read More

Demo #15: Remote Adversarial Attack on Automated Lane Centering

Yulong Cao (University of Michigan), Yanan Guo (University of Pittsburgh), Takami Sato (UC Irvine), Qi Alfred Chen (UC Irvine), Z....

Read More