Jiang Zhang (University of Southern California), Konstantinos Psounis (University of Southern California), Muhammad Haroon (University of California, Davis), Zubair Shafiq (University of California, Davis)

Online behavioral advertising, and the associated tracking paraphernalia, poses a real privacy threat. Unfortunately, existing privacy-enhancing tools are not always effective against online advertising and tracking. We propose HARPO, a principled learning-based approach to subvert online behavioral advertising through obfuscation. HARPO uses reinforcement learning to adaptively interleave real page visits with fake pages to distort a tracker’s view of a user’s browsing profile. We evaluate HARPO against real-world user profiling and ad targeting models used for online behavioral advertising. The results show that HARPO improves privacy by triggering more than 40% incorrect interest segments and 6×higher bid values. HARPO outperforms existing obfuscation tools by as much as 16×for the same overhead. HARPO is also able to achieve better stealthiness to adversarial detection than existing obfuscation tools. HARPO meaningfully advances the state-of-the-art in leveraging obfuscation to subvert online behavioral advertising.

View More Papers

Let’s Authenticate: Automated Certificates for User Authentication

James Conners (Brigham Young University), Corey Devenport (Brigham Young University), Stephen Derbidge (Brigham Young University), Natalie Farnsworth (Brigham Young University), Kyler Gates (Brigham Young University), Stephen Lambert (Brigham Young University), Christopher McClain (Brigham Young University), Parker Nichols (Brigham Young University), Daniel Zappala (Brigham Young University)

Read More

Demo #13: Attacking LiDAR Semantic Segmentation in Autonomous Driving

Yi Zhu (State University of New York at Buffalo), Chenglin Miao (University of Georgia), Foad Hajiaghajani (State University of New York at Buffalo), Mengdi Huai (University of Virginia), Lu Su (Purdue University) and Chunming Qiao (State University of New York at Buffalo)

Read More

Speeding Dumbo: Pushing Asynchronous BFT Closer to Practice

Bingyong Guo (Institute of Software, Chinese Academy of Sciences), Yuan Lu (Institute of Software Chinese Academy of Sciences), Zhenliang Lu (The University of Sydney), Qiang Tang (The University of Sydney), jing xu (Institute of Software, Chinese Academy of Sciences), Zhenfeng Zhang (Institute of Software, Chinese Academy of Sciences)

Read More