Marina Blanton (University at Buffalo (SUNY)), Chen Yuan (University at Buffalo (SUNY))

Binary search is one of the most popular algorithms in computer science. Realizing it in the context of secure multiparty computation which demands data-oblivious execution, however, is extremely non-trivial. It has been previously implemented only using oblivious RAM (ORAM) for secure computation and in this work we initiate the study of this topic using conventional secure computation techniques based on secret sharing. We develop a suite of protocols with different properties and of different structure for searching a private dataset of $m$ elements by a private numeric key. Our protocols result in $O(m)$ and $O(sqrt{m})$ communication using only standard and readily available operations based on secret sharing. We further extend our protocols to support write operations, namely, binary search that obliviously updates the selected element, and realize two variants: updating non-key fields and updating the key field. Our implementation results indicate that even after applying known and our own optimizations to the fastest ORAM constructions, our solutions are faster than optimized ORAM schemes for datasets of up to $2^{30}$ elements and by up to 2 orders of magnitude. We hope that this work will prompt further interest in seeking efficient realizations of this important problem.

View More Papers

Preventing Kernel Hacks with HAKCs

Derrick McKee (Purdue University), Yianni Giannaris (MIT CSAIL), Carolina Ortega (MIT CSAIL), Howard Shrobe (MIT CSAIL), Mathias Payer (EPFL), Hamed Okhravi (MIT Lincoln Laboratory), Nathan Burow (MIT Lincoln Laboratory)

Read More

DRIVETRUTH: Automated Autonomous Driving Dataset Generation for Security Applications

Raymond Muller (Purdue University), Yanmao Man (University of Arizona), Z. Berkay Celik (Purdue University), Ming Li (University of Arizona) and Ryan Gerdes (Virginia Tech)

Read More

The Inconvenient Truths of Ground Truth for Binary Analysis

Jim Alves-Foss, Varsha Venugopal (University of Idaho)

Read More

The Taming of the Stack: Isolating Stack Data from...

Kaiming Huang (Penn State University), Yongzhe Huang (Penn State University), Mathias Payer (EPFL), Zhiyun Qian (UC Riverside), Jack Sampson (Penn State University), Gang Tan (Penn State University), Trent Jaeger (Penn State University)

Read More