Aiping Xiong (Pennsylvania State University), Zekun Cai (Pennsylvania State University) and Tianhao Wang (University of Virginia)

Individuals’ interactions with connected autonomous vehicles (CAVs) involve sharing various data in a ubiquitous manner, raising novel challenges for privacy. The human factors of privacy must first be understood to promote consumers’ acceptance of CAVs. To inform the privacy research in the context of CAVs, we discuss how the emerging technologies development of CAV poses new privacy challenges for drivers and passengers. We argue that the privacy design of CAVs should adopt a user-centered approach, which integrates human factors into the development and deployment of privacy-enhancing technologies, such as differential privacy.

View More Papers

ATTEQ-NN: Attention-based QoE-aware Evasive Backdoor Attacks

Xueluan Gong (Wuhan University), Yanjiao Chen (Zhejiang University), Jianshuo Dong (Wuhan University), Qian Wang (Wuhan University)

Read More

HeadStart: Efficiently Verifiable and Low-Latency Participatory Randomness Generation at...

Hsun Lee (National Taiwan University), Yuming Hsu (National Taiwan University), Jing-Jie Wang (National Taiwan University), Hao Cheng Yang (National Taiwan University), Yu-Heng Chen (National Taiwan University), Yih-Chun Hu (University of Illinois at Urbana-Champaign), Hsu-Chun Hsiao (National Taiwan University)

Read More

Demo #2: Policy-based Discovery and Patching of Logic Bugs...

Hyungsub Kim (Purdue University), Muslum Ozgur Ozmen (Purdue University), Antonio Bianchi (Purdue University), Z. Berkay Celik (Purdue University) and Dongyan Xu (Purdue University)

Read More

Vision-Based Two-Factor Authentication & Localization Scheme for Autonomous Vehicles

Anas Alsoliman, Marco Levorato, and Qi Alfred Chen (UC Irvine)

Read More