Nyteisha Bookert, Mohd Anwar (North Carolina Agricultural and Technical State University)

Patient-generated health data is growing at an unparalleled rate due to advancing technologies (e.g., the Internet of Medical Things, 5G, artificial intelligence) and increased consumer transactions. The influx of data has offered life-altering solutions. Consequently, the growth has created significant privacy challenges. A central theme to mitigating risks is promoting transparency and notifying stakeholders of data practices through privacy policies. However, natural language privacy policies have several limitations, such as being difficult to understand (by the user), lengthy, and having conflicting requirements. Yet they remain the de facto standard to inform users of privacy practices and how organizations follow privacy regulations. We developed an automated process to evaluate the appropriateness of combining machine learning and custom named entity recognition techniques to extract IoMT-relevant privacy factors in the privacy policies of IoMT devices. We employed machine learning and the natural language processing technique of named entity recognition to automatically analyze a corpus of policies and specifications to extract privacy-related information for the IoMT device. Based on the natural language analysis of policies, we provide fine-grained annotations that can help reduce the manual and tedious process of policy analysis and aid privacy engineers and policy makers in developing suitable privacy policies.

View More Papers

MacOS versus Microsoft Windows: A Study on the Cybersecurity...

Cem Topcuoglu (Northeastern University), Andrea Martinez (Florida International University), Abbas Acar (Florida International University), Selcuk Uluagac (Florida International University), Engin Kirda (Northeastern University)

Read More

Your Router is My Prober: Measuring IPv6 Networks via...

Long Pan (Tsinghua University), Jiahai Yang (Tsinghua University), Lin He (Tsinghua University), Zhiliang Wang (Tsinghua University), Leyao Nie (Tsinghua University), Guanglei Song (Tsinghua University), Yaozhong Liu (Tsinghua University)

Read More

Explainable AI in Cybersecurity Operations: Lessons Learned from xAI...

Megan Nyre-Yu (Sandia National Laboratories), Elizabeth S. Morris (Sandia National Laboratories), Blake Moss (Sandia National Laboratories), Charles Smutz (Sandia National Laboratories), Michael R. Smith (Sandia National Laboratories)

Read More

Reconciling the Hacker Spirit

Yan Shoshitaishvili (Arizona State University)

Read More