Andrei Costin, Hannu Turtiainen, Syed Khandkher and Timo Hamalainen (Faculty of Information Technology, University of Jyvaskyla, Finland) Presenter: Andrei Costin

COSPAS-SARSAT is an International programme for “Search and Rescue” (SAR) missions based on the “Satellite Aided Tracking” system (SARSAT). It is designed to provide accurate, timely, and reliable distress alert and location data to help SAR authorities of participating countries to assist persons and vessels in distress. Two types of satellite constellations serve COSPAS-SARSAT, low earth orbit search and rescue (LEOSAR) and geostationary orbiting search and rescue (GEOSAR). Despite its nearly-global deployment and critical importance, unfortunately enough, we found that COSPAS-SARSAT protocols and standard 406 MHz transmissions lack essential means of cybersecurity.

In this paper, we investigate the cybersecurity aspects of COSPAS-SARSAT space-/satellite-based systems. In particular, we practically and successfully implement and demonstrate the first (to our knowledge) attacks on COSPAS-SARSAT 406 MHz protocols, namely replay, spoofing, and protocol fuzzing on EPIRB protocols. We also identify a set of core research challenges preventing more effective cybersecurity research in the field and outline the main cybersecurity weaknesses and possible mitigations to increase the system’s cybersecurity level.

View More Papers

Investigating User Behaviour Towards Fake News on Social Media...

Yasmeen Abdrabou (University of the Bundeswehr Munich), Elisaveta Karypidou (LMU Munich), Florian Alt (University of the Bundeswehr Munich), Mariam Hassib (University of the Bundeswehr Munich)

Read More

Exploiting Transport Protocol Vulnerabilities in SAE J1939 Networks

Rik Chatterjee, Subhojeet Mukherjee, Jeremy Daily (Colorado State University)

Read More

User Attitudes Towards Controls for Ad Interests Estimated On-device...

Florian Lachner, Minzhe Yuan Chen Cheng, Theodore Olsauskas-Warren (Google)

Read More

Faster Secure Comparisons with Offline Phase for Efficient Private...

Florian Kerschbaum (University of Waterloo), Erik-Oliver Blass (Airbus), Rasoul Akhavan Mahdavi (University of Waterloo)

Read More