Chloe Fortuna (STR), JT Paasch (STR), Sam Lasser (Draper), Philip Zucker (Draper), Chris Casinghino (Jane Street), Cody Roux (AWS)

Modifying a binary program without access to the original source code is an error-prone task. In many cases, the modified binary must be tested or otherwise validated to ensure that the change had its intended effect and no others—a process that can be labor-intensive. This paper presents CBAT, an automated tool for verifying the correctness of binary transformations. CBAT’s approach to this task is based on a differential program analysis that checks a relative correctness property over the original and modified versions of a function. CBAT applies this analysis to the binary domain by implementing it as an extension to the BAP binary analysis toolkit. We highlight several features of CBAT that contribute to the tool’s efficiency and to the interpretability of its output. We evaluate CBAT’s performance by using the tool to verify modifications to three collections of functions taken from real-world binaries.

View More Papers

A Cross-Architecture Instruction Embedding Model for Natural Language Processing-Inspired...

Kimberly Redmond (University of South Carolina), Lannan Luo (University of South Carolina), Qiang Zeng (University of South Carolina)

Read More

dAngr: Lifting Software Debugging to a Symbolic Level

Dairo de Ruck, Jef Jacobs, Jorn Lapon, Vincent Naessens (DistriNet, KU Leuven, 3001 Leuven, Belgium)

Read More

dRR: A Decentralized, Scalable, and Auditable Architecture for RPKI...

Yingying Su (Tsinghua university), Dan Li (Tsinghua university), Li Chen (Zhongguancun Laboratory), Qi Li (Tsinghua university), Sitong Ling (Tsinghua University)

Read More

It Doesn’t Have to Be So Hard: Efficient Symbolic...

Vaibhav Sharma (University of Minnesota), Navid Emamdoost (University of Minnesota), Seonmo Kim (University of Minnesota), Stephen McCamant (University of Minnesota)

Read More