Yun Zhang (Hunan University), Yuling Liu (Hunan University), Ge Cheng (Xiangtan University), Bo Ou (Hunan University)

In the field of computer security, binary code similarity detection is a crucial for identifying malicious software, copyright infringement, and software vulnerabilities. However, obfuscation techniques not only changes the structure and features of the code but also effectively conceal its potential malicious behaviors or infringing nature, thereby increasing the complexity of detection. Although methods based on graph neural networks have become the forefront technology for solving code similarity detection due to their effective processing and representation of code structures, they have limitations in dealing with obfuscated function matching, especially in scenarios involving control flow obfuscation. This paper proposes a method based on Graph Transformers aimed at improving the accuracy and efficiency of obfuscation-resilient binary code similarity detection. Our method utilizes Transformers to extract global information and employs three different encodings to determine the relative importance or influence of nodes in the CFG, the relative position between nodes, and the hierarchical relationships within the CFG. This method demonstrates significant adaptability to various obfuscation techniques and exhibits enhanced robustness and scalability when processing large datasets.

View More Papers

Compromising Industrial Processes using Web-Based Programmable Logic Controller Malware

Ryan Pickren (Georgia Institute of Technology), Tohid Shekari (Georgia Institute of Technology), Saman Zonouz (Georgia Institute of Technology), Raheem Beyah (Georgia Institute of Technology)

Read More

o-glassesX: Compiler Provenance Recovery with Attention Mechanism from a...

Yuhei Otsubo (National Police Agency, Tokyo, Japan), Akira Otsuka (Institute of information Security, Japan), Mamoru Mimura (National Defense Academy, Japan), Takeshi Sakaki (The University of Tokyo, Japan), Hiroshi Ukegawa (National Police Agency, Tokyo, Japan)

Read More

Sneaky Spikes: Uncovering Stealthy Backdoor Attacks in Spiking Neural...

Gorka Abad (Radboud University & Ikerlan Technology Research Centre), Oguzhan Ersoy (Radboud University), Stjepan Picek (Radboud University & Delft University of Technology), Aitor Urbieta (Ikerlan Technology Research Centre, Basque Research and Technology Alliance (BRTA))

Read More

The Impact of Workload on Phishing Susceptibility: An Experiment

Sijie Zhuo (University of Auckland), Robert Biddle (University of Auckland and Carleton University, Ottawa), Lucas Betts, Nalin Asanka Gamagedara Arachchilage, Yun Sing Koh, Danielle Lottridge, Giovanni Russello (University of Auckland)

Read More