Naif Mehanna (Univ. Lille / Inria / CNRS), Walter Rudametkin (IRISA / Univ Rennes), Pierre Laperdrix (CNRS, Univ Lille, Inria Lille), and Antoine Vastel (Datadome)

Free-proxies have been widespread since the early days of the Web, helping users bypass geo-blocked content and conceal their IP addresses. Various proxy providers promise faster Internet or increased privacy while advertising their lists comprised of hundreds of readily available free proxies. However, while paid proxy services advertise the support of encrypted connections and high stability, free proxies often lack such guarantees, making them prone to malicious activities such as eavesdropping or modifying content. Furthermore, there’s a market that encourages exploiting devices to install proxies.

In this paper, we present a 30-month longitudinal study analyzing the stability, security, and potential manipulation of free web proxies that we collected from 11 providers. Our collection resulted in over 640, 600 proxies, that we cumulatively tested daily. We find that only 34.5% of proxies were active at least once during our tests, showcasing the general instability of free proxies. Geographically, a majority of proxies originate from the US and China. Leveraging the Shodan search engine, we identified 4, 452 distinct vulnerabilities on the proxies’ IP addresses, including 1, 755 vulnerabilities that allow unauthorized remote code execution and 2, 036 that enable privilege escalation on the host device. Through the software analysis on the proxies’ IP addresses, we find that 42, 206 of them appear to run on MikroTik routers. Worryingly, we also discovered 16, 923 proxies that manipulate content, indicating potential malicious intent by proxy owners. Ultimately, our research reveals that the use of free web proxies poses significant risks to users’ privacy and security. The instability, vulnerabilities, and potential for malicious actions uncovered in our analysis lead us to strongly caution users against relying on free proxies.

View More Papers

Security-Performance Tradeoff in DAG-based Proof-of-Work Blockchain Protocols

Shichen Wu (1. School of Cyber Science and Technology, Shandong University 2. Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education), Puwen Wei (1. School of Cyber Science and Technology, Shandong University 2. Quancheng Laboratory 3. Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education), Ren Zhang (Cryptape Co. Ltd. and…

Read More

DeepGo: Predictive Directed Greybox Fuzzing

Peihong Lin (National University of Defense Technology), Pengfei Wang (National University of Defense Technology), Xu Zhou (National University of Defense Technology), Wei Xie (National University of Defense Technology), Gen Zhang (National University of Defense Technology), Kai Lu (National University of Defense Technology)

Read More

WIP: Towards Practical LiDAR Spoofing Attack against Vehicles Driving...

Ryo Suzuki (Keio University), Takami Sato (University of California, Irvine), Yuki Hayakawa, Kazuma Ikeda, Ozora Sako, Rokuto Nagata (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

Read More

The State of https Adoption on the Web

Christoph Kerschbaumer (Mozilla Corporation), Frederik Braun (Mozilla Corporation), Simon Friedberger (Mozilla Corporation), Malte Jürgens (Mozilla Corporation)

Read More