Naif Mehanna (Univ. Lille / Inria / CNRS), Walter Rudametkin (IRISA / Univ Rennes), Pierre Laperdrix (CNRS, Univ Lille, Inria Lille), and Antoine Vastel (Datadome)

Free-proxies have been widespread since the early days of the Web, helping users bypass geo-blocked content and conceal their IP addresses. Various proxy providers promise faster Internet or increased privacy while advertising their lists comprised of hundreds of readily available free proxies. However, while paid proxy services advertise the support of encrypted connections and high stability, free proxies often lack such guarantees, making them prone to malicious activities such as eavesdropping or modifying content. Furthermore, there’s a market that encourages exploiting devices to install proxies.

In this paper, we present a 30-month longitudinal study analyzing the stability, security, and potential manipulation of free web proxies that we collected from 11 providers. Our collection resulted in over 640, 600 proxies, that we cumulatively tested daily. We find that only 34.5% of proxies were active at least once during our tests, showcasing the general instability of free proxies. Geographically, a majority of proxies originate from the US and China. Leveraging the Shodan search engine, we identified 4, 452 distinct vulnerabilities on the proxies’ IP addresses, including 1, 755 vulnerabilities that allow unauthorized remote code execution and 2, 036 that enable privilege escalation on the host device. Through the software analysis on the proxies’ IP addresses, we find that 42, 206 of them appear to run on MikroTik routers. Worryingly, we also discovered 16, 923 proxies that manipulate content, indicating potential malicious intent by proxy owners. Ultimately, our research reveals that the use of free web proxies poses significant risks to users’ privacy and security. The instability, vulnerabilities, and potential for malicious actions uncovered in our analysis lead us to strongly caution users against relying on free proxies.

View More Papers

GNNIC: Finding Long-Lost Sibling Functions with Abstract Similarity

Qiushi Wu (University of Minnesota), Zhongshu Gu (IBM Research), Hani Jamjoom (IBM Research), Kangjie Lu (University of Minnesota)

Read More

More Lightweight, yet Stronger: Revisiting OSCORE’s Replay Protection

Konrad-Felix Krentz (Uppsala University), Thiemo Voigt (Uppsala University, RISE Computer Science)

Read More

Timing Channels in Adaptive Neural Networks

Ayomide Akinsanya (Stevens Institute of Technology), Tegan Brennan (Stevens Institute of Technology)

Read More

Measuring the Prevalence of Password Manager Issues Using In-Situ...

Adryana Hutchinson (The George Washington University), Jinwei Tang (Clark University), Adam Aviv (The George Washington University), Peter Story (Clark University)

Read More