Angelo Ruocco, Chris Porter, Claudio Carvalho, Daniele Buono, Derren Dunn, Hubertus Franke, James Bottomley, Marcio Silva, Mengmei Ye, Niteesh Dubey, Tobin Feldman-Fitzthum (IBM Research)

Developers leverage machine learning (ML) platforms to handle a range of their ML tasks in the cloud, but these use cases have not been deeply considered in the context of confidential computing. Confidential computing’s threat model treats the cloud provider as untrusted, so the user’s data in use (and certainly at rest) must be encrypted and integrity-protected. This host-guest barrier presents new challenges and opportunities in the ML platform space. In particular, we take a glancing look at ML platforms’ pipeline tools, how they currently align with the Confidential Containers project, and what may be needed to bridge several gaps.

View More Papers

Don't Interrupt Me – A Large-Scale Study of On-Device...

Marian Harbach (Google), Igor Bilogrevic (Google), Enrico Bacis (Google), Serena Chen (Google), Ravjit Uppal (Google), Andy Paicu (Google), Elias Klim (Google), Meggyn Watkins (Google), Balazs Engedy (Google)

Read More

MacOS versus Microsoft Windows: A Study on the Cybersecurity...

Cem Topcuoglu (Northeastern University), Andrea Martinez (Florida International University), Abbas Acar (Florida International University), Selcuk Uluagac (Florida International University), Engin Kirda (Northeastern University)

Read More

Analysis of the Effect of the Difference between Japanese...

Rei Yamagishi, Shinya Sasa, and Shota Fujii (Hitachi, Ltd.)

Read More