Kashyap Thimmaraju (TU Berlin)

The increasing complexity and criticality of cybersecurity operations have placed immense cognitive and emotional demands on Security Operation Center (SOC) practitioners. These demands frequently result in burnout, diminished wellbeing, and reduced engagement, which negatively impact both individual performance and overall SOC effectiveness. This paper envisions a transformative approach to SOC productivity and practitioner well-being through targeted interventions that prevent burnout, enhance well-being, and foster engagement. By addressing the psychological challenges inherent in high-stress cybersecurity roles, our work seeks to promote holistic resilience in SOC environments. This study focuses on evaluating the mental health landscape of SOC practitioners using validated psychological scales. Leveraging the Copenhagen Burnout Inventory (CBI), Secure Flourish Index (SFI), and Short Flow Scale (SFS), we quantitatively assess burnout, well-being, and flow states among 19 SOC practitioners. The results highlight alarmingly high levels of personal and work-related burnout among participants (approx. 31-36% of participants met the criteria for high burnout), with considerable deficiencies in mental and physical health, life satisfaction, and social connectedness compared to normative workplace benchmarks. Simultaneously, participants report a sense of meaning and purpose, high financial security and flow experiences, reflecting their ability to engage deeply with challenging tasks and derive intrinsic rewards, despite a reduced sense of control, concentration and increased self-consciousness. The findings underscore the dual-edged nature of SOC roles— practitioners find purpose and fulfillment in their tasks yet face significant risks to their well-being. Broader conclusions from this work reveal the urgent need for structured interventions tailored to SOC environments. Key recommendations include fostering work environments that support mental health, promoting psychological safety, and implementing systems to address chronic stressors and workload imbalances. Moreover, the study highlights the importance of leveraging flow states as a mechanism to enhance practitioner engagement and productivity.

View More Papers

On Borrowed Time – Preventing Static Side-Channel Analysis

Robert Dumitru (Ruhr University Bochum and The University of Adelaide), Thorben Moos (UCLouvain), Andrew Wabnitz (Defence Science and Technology Group), Yuval Yarom (Ruhr University Bochum)

Read More

IoT Software Updates: User Perspectives in the Context of...

S. P. Veed, S. M. Daftary, B. Singh, M. Rudra, S. Berhe (University of the Pacific), M. Maynard (Data Independence LLC) F. Khomh (Polytechnique Montreal)

Read More

EAGLEYE: Exposing Hidden Web Interfaces in IoT Devices via...

Hangtian Liu (Information Engineering University), Lei Zheng (Institute for Network Sciences and Cyberspace (INSC), Tsinghua University), Shuitao Gan (Laboratory for Advanced Computing and Intelligence Engineering), Chao Zhang (Institute for Network Sciences and Cyberspace (INSC), Tsinghua University), Zicong Gao (Information Engineering University), Hongqi Zhang (Henan Key Laboratory of Information Security), Yishun Zeng (Institute for Network Sciences…

Read More

Securing BGP ASAP: ASPA and other Post-ROV Defenses

Justin Furuness (University of Connecticut), Cameron Morris (University of Connecticut), Reynaldo Morillo (University of Connecticut), Arvind Kasiliya (University of Connecticut), Bing Wang (University of Connecticut), Amir Herzberg (University of Connecticut)

Read More