Kashyap Thimmaraju (TU Berlin)

The increasing complexity and criticality of cybersecurity operations have placed immense cognitive and emotional demands on Security Operation Center (SOC) practitioners. These demands frequently result in burnout, diminished wellbeing, and reduced engagement, which negatively impact both individual performance and overall SOC effectiveness. This paper envisions a transformative approach to SOC productivity and practitioner well-being through targeted interventions that prevent burnout, enhance well-being, and foster engagement. By addressing the psychological challenges inherent in high-stress cybersecurity roles, our work seeks to promote holistic resilience in SOC environments. This study focuses on evaluating the mental health landscape of SOC practitioners using validated psychological scales. Leveraging the Copenhagen Burnout Inventory (CBI), Secure Flourish Index (SFI), and Short Flow Scale (SFS), we quantitatively assess burnout, well-being, and flow states among 19 SOC practitioners. The results highlight alarmingly high levels of personal and work-related burnout among participants (approx. 31-36% of participants met the criteria for high burnout), with considerable deficiencies in mental and physical health, life satisfaction, and social connectedness compared to normative workplace benchmarks. Simultaneously, participants report a sense of meaning and purpose, high financial security and flow experiences, reflecting their ability to engage deeply with challenging tasks and derive intrinsic rewards, despite a reduced sense of control, concentration and increased self-consciousness. The findings underscore the dual-edged nature of SOC roles— practitioners find purpose and fulfillment in their tasks yet face significant risks to their well-being. Broader conclusions from this work reveal the urgent need for structured interventions tailored to SOC environments. Key recommendations include fostering work environments that support mental health, promoting psychological safety, and implementing systems to address chronic stressors and workload imbalances. Moreover, the study highlights the importance of leveraging flow states as a mechanism to enhance practitioner engagement and productivity.

View More Papers

Mysticeti: Reaching the Latency Limits with Uncertified DAGs

Kushal Babel (Cornell Tech & IC3), Andrey Chursin (Mysten Labs), George Danezis (Mysten Labs & University College London (UCL)), Anastasios Kichidis (Mysten Labs), Lefteris Kokoris-Kogias (Mysten Labs & IST Austria), Arun Koshy (Mysten Labs), Alberto Sonnino (Mysten Labs & University College London (UCL)), Mingwei Tian (Mysten Labs)

Read More

Magmaw: Modality-Agnostic Adversarial Attacks on Machine Learning-Based Wireless Communication...

Jung-Woo Chang (University of California, San Diego), Ke Sun (University of California, San Diego), Nasimeh Heydaribeni (University of California, San Diego), Seira Hidano (KDDI Research, Inc.), Xinyu Zhang (University of California, San Diego), Farinaz Koushanfar (University of California, San Diego)

Read More

Exploring User Perceptions of Security Auditing in the Web3...

Molly Zhuangtong Huang (University of Macau), Rui Jiang (University of Macau), Tanusree Sharma (Pennsylvania State University), Kanye Ye Wang (University of Macau)

Read More

Decoupling Permission Management from Cryptography for Privacy-Preserving Systems

Ruben De Smet (Department of Engineering Technology (INDI), Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel), Tom Godden (Department of Engineering Technology (INDI), Vrije Universiteit Brussel), Kris Steenhaut (Department of Engineering Technology (INDI), Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel), An Braeken (Department of Engineering Technology (INDI), Vrije Universiteit Brussel)

Read More