Fenghao Dong (CMU)

Network packet traces are critical for security tasks which includes longitudinal traffic analysis, system testing, and future workload forecasting. However, storing these traces over extended periods is costly and subject to compliance constraints. Deep Generative Compression (DGC) offers a solution by generating inexact but structurally accurate synthetic traces that preserve essential features without storing full sensitive data. This paper examines key research questions on the feasibility, cost-competitiveness, and scalability of DGC for large-scale, real-world network environments. We investigate the types of applications that benefit from DGC and design a framework to reliably operate for them. Our initial evaluation indicates that DGC can be an alternative to standard storage techniques (such as gzip or sampling) while meeting regulatory needs and resource limits. We further discuss open challenges and future directions, such as improving efficiency in streaming operations, optimizing model scalability, and addressing privacy risks in this scenario.

View More Papers

Hidden and Lost Control: on Security Design Risks in...

Haoqiang Wang, Yiwei Fang (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences; Indiana University Bloomington), Yichen Liu (Indiana University Bloomington), Ze Jin (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences; Indiana University Bloomington), Emma Delph…

Read More

Rediscovering Method Confusion in Proposed Security Fixes for Bluetooth

Maximilian von Tschirschnitz (Technical University of Munich), Ludwig Peuckert (Technical University of Munich), Moritz Buhl (Technical University of Munich), Jens Grossklags (Technical University of Munich)

Read More

DUMPLING: Fine-grained Differential JavaScript Engine Fuzzing

Liam Wachter (EPFL), Julian Gremminger (EPFL), Christian Wressnegger (Karlsruhe Institute of Technology (KIT)), Mathias Payer (EPFL), Flavio Toffalini (EPFL)

Read More

dAngr: Lifting Software Debugging to a Symbolic Level

Dairo de Ruck, Jef Jacobs, Jorn Lapon, Vincent Naessens (DistriNet, KU Leuven, 3001 Leuven, Belgium)

Read More