Fenghao Dong (CMU)

Network packet traces are critical for security tasks which includes longitudinal traffic analysis, system testing, and future workload forecasting. However, storing these traces over extended periods is costly and subject to compliance constraints. Deep Generative Compression (DGC) offers a solution by generating inexact but structurally accurate synthetic traces that preserve essential features without storing full sensitive data. This paper examines key research questions on the feasibility, cost-competitiveness, and scalability of DGC for large-scale, real-world network environments. We investigate the types of applications that benefit from DGC and design a framework to reliably operate for them. Our initial evaluation indicates that DGC can be an alternative to standard storage techniques (such as gzip or sampling) while meeting regulatory needs and resource limits. We further discuss open challenges and future directions, such as improving efficiency in streaming operations, optimizing model scalability, and addressing privacy risks in this scenario.

View More Papers

Iris: Dynamic Privacy Preserving Search in Authenticated Chord Peer-to-Peer...

Angeliki Aktypi (University of Oxford), Kasper Rasmussen (University of Oxford)

Read More

EMIRIS: Eavesdropping on Iris Information via Electromagnetic Side Channel

Wenhao Li (Shandong University), Jiahao Wang (Shandong University), Guoming Zhang (Shandong University), Yanni Yang (Shandong University), Riccardo Spolaor (Shandong University), Xiuzhen Cheng (Shandong University), Pengfei Hu (Shandong University)

Read More

“I’m 73, you can’t expect me to have multiple...

Ashley Sheil (Munster Technological University), Jacob Camilleri (Munster Technological University), Michelle O Keeffe (Munster Technological University), Melanie Gruben (Munster Technological University), Moya Cronin (Munster Technological University) and Hazel Murray (Munster Technological University)

Read More

How Different Tokenization Algorithms Impact LLMs and Transformer Models...

Ahmed Mostafa, Raisul Arefin Nahid, Samuel Mulder (Auburn University)

Read More