Chandranshu Gupta, Gaurav Varshney (IIT Jammu)

The Internet of Things (IoT) ecosystem is rapidly expanding, connecting resource-constrained devices that require lightweight and efficient security mechanisms. The Matter protocol standardizes secure communication in smart homes, relying on X.509 certificates for device authentication. While effective, the management of these certificates—including creation, storage, distribution, and revocation—is cumbersome and resourceintensive for IoT devices. Additionally, Matter’s reliance on private key storage increases vulnerability to key compromise. This paper proposes an improved lightweight authentication protocol combining Physical Unclonable Functions (PUFs) and Public Key Infrastructure (PKI) tailored for Matter-compliant IoT devices. By dynamically generating device-unique keys during operation, PUFs eliminate the need to store private keys, mitigating key extraction threats. The protocol reduces certificate storage overhead and simplifies the pairing process. Performance evaluations demonstrate significant reductions in computational overhead while maintaining robust security. By addressing Matter-specific challenges, the proposed approach optimizes device authentication, supports Perfect Forward Secrecy (PFS), and is well-suited for large-scale IoT deployments.

View More Papers

Towards Establishing a Systematic Security Framework for Next Generation...

Tolga O. Atalay (A2 Labs LLC), Tianyuan Yu (UCLA), Lixia Zhang (UCLA), Angelos Stavrou (A2 Labs LLC)

Read More

Secure Data Analytics in Apache Spark with Fine-grained Policy...

Byeongwook Kim (Seoul National University), Jaewon Hur (Seoul National University), Adil Ahmad (Arizona State University), Byoungyoung Lee (Seoul National University)

Read More

AI-Assisted RF Fingerprinting for Identification of User Devices in...

Aishwarya Jawne (Center for Connected Autonomy & AI, Florida Atlantic University), Georgios Sklivanitis (Center for Connected Autonomy & AI, Florida Atlantic University), Dimitris A. Pados (Center for Connected Autonomy & AI, Florida Atlantic University), Elizabeth Serena Bentley (Air Force Research Laboratory)

Read More

Work-in-Progress: Uncovering Dark Patterns: A Longitudinal Study of Cookie...

Zihan Qu (Johns Hopkins University), Xinyi Qu (University College London), Xin Shen, Zhen Liang, and Jianjia Yu (Johns Hopkins University)

Read More