Chandranshu Gupta, Gaurav Varshney (IIT Jammu)

The Internet of Things (IoT) ecosystem is rapidly expanding, connecting resource-constrained devices that require lightweight and efficient security mechanisms. The Matter protocol standardizes secure communication in smart homes, relying on X.509 certificates for device authentication. While effective, the management of these certificates—including creation, storage, distribution, and revocation—is cumbersome and resourceintensive for IoT devices. Additionally, Matter’s reliance on private key storage increases vulnerability to key compromise. This paper proposes an improved lightweight authentication protocol combining Physical Unclonable Functions (PUFs) and Public Key Infrastructure (PKI) tailored for Matter-compliant IoT devices. By dynamically generating device-unique keys during operation, PUFs eliminate the need to store private keys, mitigating key extraction threats. The protocol reduces certificate storage overhead and simplifies the pairing process. Performance evaluations demonstrate significant reductions in computational overhead while maintaining robust security. By addressing Matter-specific challenges, the proposed approach optimizes device authentication, supports Perfect Forward Secrecy (PFS), and is well-suited for large-scale IoT deployments.

View More Papers

On the Robustness of LDP Protocols for Numerical Attributes...

Xiaoguang Li (Xidian University, Purdue University), Zitao Li (Alibaba Group (U.S.) Inc.), Ninghui Li (Purdue University), Wenhai Sun (Purdue University, West Lafayette, USA)

Read More

Keynote talk by Prof. Gene Tsudik (University of California,...

Dr. Gene Tsudik, Distinguished Professor of Computer Science, University of California, Irvine

Read More

ASGARD: Protecting On-Device Deep Neural Networks with Virtualization-Based Trusted...

Myungsuk Moon (Yonsei University), Minhee Kim (Yonsei University), Joonkyo Jung (Yonsei University), Dokyung Song (Yonsei University)

Read More