Chandranshu Gupta, Gaurav Varshney (IIT Jammu)

The Internet of Things (IoT) ecosystem is rapidly expanding, connecting resource-constrained devices that require lightweight and efficient security mechanisms. The Matter protocol standardizes secure communication in smart homes, relying on X.509 certificates for device authentication. While effective, the management of these certificates—including creation, storage, distribution, and revocation—is cumbersome and resourceintensive for IoT devices. Additionally, Matter’s reliance on private key storage increases vulnerability to key compromise. This paper proposes an improved lightweight authentication protocol combining Physical Unclonable Functions (PUFs) and Public Key Infrastructure (PKI) tailored for Matter-compliant IoT devices. By dynamically generating device-unique keys during operation, PUFs eliminate the need to store private keys, mitigating key extraction threats. The protocol reduces certificate storage overhead and simplifies the pairing process. Performance evaluations demonstrate significant reductions in computational overhead while maintaining robust security. By addressing Matter-specific challenges, the proposed approach optimizes device authentication, supports Perfect Forward Secrecy (PFS), and is well-suited for large-scale IoT deployments.

View More Papers

A Large-Scale Measurement Study of the PROXY Protocol and...

Stijn Pletinckx (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara), Giovanni Vigna (University of California, Santa Barbara)

Read More

Hidden and Lost Control: on Security Design Risks in...

Haoqiang Wang, Yiwei Fang (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences; Indiana University Bloomington), Yichen Liu (Indiana University Bloomington), Ze Jin (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences; Indiana University Bloomington), Emma Delph…

Read More

LeoCommon – A Ground Station Observatory Network for LEO...

Eric Jedermann, Martin Böh (University of Kaiserslautern), Martin Strohmeier (armasuisse Science & Technology), Vincent Lenders (Cyber-Defence Campus, armasuisse Science & Technology), Jens Schmitt (University of Kaiserslautern)

Read More