Chandranshu Gupta, Gaurav Varshney (IIT Jammu)

The Internet of Things (IoT) ecosystem is rapidly expanding, connecting resource-constrained devices that require lightweight and efficient security mechanisms. The Matter protocol standardizes secure communication in smart homes, relying on X.509 certificates for device authentication. While effective, the management of these certificates—including creation, storage, distribution, and revocation—is cumbersome and resourceintensive for IoT devices. Additionally, Matter’s reliance on private key storage increases vulnerability to key compromise. This paper proposes an improved lightweight authentication protocol combining Physical Unclonable Functions (PUFs) and Public Key Infrastructure (PKI) tailored for Matter-compliant IoT devices. By dynamically generating device-unique keys during operation, PUFs eliminate the need to store private keys, mitigating key extraction threats. The protocol reduces certificate storage overhead and simplifies the pairing process. Performance evaluations demonstrate significant reductions in computational overhead while maintaining robust security. By addressing Matter-specific challenges, the proposed approach optimizes device authentication, supports Perfect Forward Secrecy (PFS), and is well-suited for large-scale IoT deployments.

View More Papers

ERW-Radar: An Adaptive Detection System against Evasive Ransomware by...

Lingbo Zhao (Institute of Information Engineering, Chinese Academy of Sciences), Yuhui Zhang (Institute of Information Engineering, Chinese Academy of Sciences), Zhilu Wang (Institute of Information Engineering, Chinese Academy of Sciences), Fengkai Yuan (Institute of Information Engineering, CAS), Rui Hou (Institute of Information Engineering, Chinese Academy of Sciences)

Read More

ScopeVerif: Analyzing the Security of Android’s Scoped Storage via...

Zeyu Lei (Purdue University), Güliz Seray Tuncay (Google), Beatrice Carissa Williem (Purdue University), Z. Berkay Celik (Purdue University), Antonio Bianchi (Purdue University)

Read More

LeoCommon – A Ground Station Observatory Network for LEO...

Eric Jedermann, Martin Böh (University of Kaiserslautern), Martin Strohmeier (armasuisse Science & Technology), Vincent Lenders (Cyber-Defence Campus, armasuisse Science & Technology), Jens Schmitt (University of Kaiserslautern)

Read More

Revealing the Black Box of Device Search Engine: Scanning...

Mengying Wu (Fudan University), Geng Hong (Fudan University), Jinsong Chen (Fudan University), Qi Liu (Fudan University), Shujun Tang (QI-ANXIN Technology Research Institute; Tsinghua University), Youhao Li (QI-ANXIN Technology Research Institute), Baojun Liu (Tsinghua University), Haixin Duan (Tsinghua University; Quancheng Laboratory), Min Yang (Fudan University)

Read More