Chandranshu Gupta, Gaurav Varshney (IIT Jammu)

The Internet of Things (IoT) ecosystem is rapidly expanding, connecting resource-constrained devices that require lightweight and efficient security mechanisms. The Matter protocol standardizes secure communication in smart homes, relying on X.509 certificates for device authentication. While effective, the management of these certificates—including creation, storage, distribution, and revocation—is cumbersome and resourceintensive for IoT devices. Additionally, Matter’s reliance on private key storage increases vulnerability to key compromise. This paper proposes an improved lightweight authentication protocol combining Physical Unclonable Functions (PUFs) and Public Key Infrastructure (PKI) tailored for Matter-compliant IoT devices. By dynamically generating device-unique keys during operation, PUFs eliminate the need to store private keys, mitigating key extraction threats. The protocol reduces certificate storage overhead and simplifies the pairing process. Performance evaluations demonstrate significant reductions in computational overhead while maintaining robust security. By addressing Matter-specific challenges, the proposed approach optimizes device authentication, supports Perfect Forward Secrecy (PFS), and is well-suited for large-scale IoT deployments.

View More Papers

Kronos: A Secure and Generic Sharding Blockchain Consensus with...

Yizhong Liu (Beihang University), Andi Liu (Beihang University), Yuan Lu (Institute of Software Chinese Academy of Sciences), Zhuocheng Pan (Beihang University), Yinuo Li (Xi’an Jiaotong University), Jianwei Liu (Beihang University), Song Bian (Beihang University), Mauro Conti (University of Padua)

Read More

Revisiting Concept Drift in Windows Malware Detection: Adaptation to...

Adrian Shuai Li (Purdue University), Arun Iyengar (Intelligent Data Management and Analytics, LLC), Ashish Kundu (Cisco Research), Elisa Bertino (Purdue University)

Read More

Diffence: Fencing Membership Privacy With Diffusion Models

Yuefeng Peng (University of Massachusetts Amherst), Ali Naseh (University of Massachusetts Amherst), Amir Houmansadr (University of Massachusetts Amherst)

Read More

Statically Discover Cross-Entry Use-After-Free Vulnerabilities in the Linux Kernel

Hang Zhang (Indiana University Bloomington), Jangha Kim (The Affiliated Institute of ETRI, ROK), Chuhong Yuan (Georgia Institute of Technology), Zhiyun Qian (University of California, Riverside), Taesoo Kim (Georgia Institute of Technology)

Read More