Tomer Schwartz (Data and Security Laboratory Fujitsu Research of Europe Ltd), Ofir Manor (Data and Security Laboratory Fujitsu Research of Europe Ltd), Andikan Otung (Data and Security Laboratory Fujitsu Research of Europe Ltd)

Cyber attacks and fraud pose significant risks to online platforms, with malicious actors who often employ VPN servers to conceal their identities and bypass geolocation-based security measures. Current passive VPN detection methods identify VPN connections with more than 95% accuracy, but depend on prior knowledge, such as known VPN to IP mappings and predefined communication patterns. This makes them ineffective against sophisticated attackers who leverage compromised machines as VPN servers. On the other hand, current active detection methods are effective in detecting proxy usage but are mostly ineffective in VPN detection.

This paper introduces SNITCH (Server-side Non-intrusive Identification of Tunneled CHaracteristics), a novel approach designed to enhance web security by identifying VPN use without prior data collection on known VPN servers or utilizing intrusive client-side software. SNITCH combines IP geolocation, ground-truth landmarks, and communication delay measurements to detect VPN activity in real time and seamlessly integrates into the authentication process, preserving user experience while enhancing security. We measured 130 thousand connections from over 24 thousand globally distributed VPN servers and client nodes to validate the feasibility of our solution in the real world. Our experiments revealed that in scenarios where the State of the Art fails to detect, SNITCH achieves a detection accuracy of up to 93%, depending on the geographical region.

View More Papers

VulShield: Protecting Vulnerable Code Before Deploying Patches

Yuan Li (Zhongguancun Laboratory & Tsinghua University), Chao Zhang (Tsinghua University & JCSS & Zhongguancun Laboratory), Jinhao Zhu (UC Berkeley), Penghui Li (Zhongguancun Laboratory), Chenyang Li (Peking University), Songtao Yang (Zhongguancun Laboratory), Wende Tan (Tsinghua University)

Read More

SketchFeature: High-Quality Per-Flow Feature Extractor Towards Security-Aware Data Plane

Sian Kim (Ewha Womans University), Seyed Mohammad Mehdi Mirnajafizadeh (Wayne State University), Bara Kim (Korea University), Rhongho Jang (Wayne State University), DaeHun Nyang (Ewha Womans University)

Read More

Blindfold: Confidential Memory Management by Untrusted Operating System

Caihua Li (Yale University), Seung-seob Lee (Yale University), Lin Zhong (Yale University)

Read More

TME-Box: Scalable In-Process Isolation through Intel TME-MK Memory Encryption

Martin Unterguggenberger (Graz University of Technology), Lukas Lamster (Graz University of Technology), David Schrammel (Graz University of Technology), Martin Schwarzl (Cloudflare, Inc.), Stefan Mangard (Graz University of Technology)

Read More