Keika Mori (Deloitte Tohmatsu Cyber LLC, Waseda University), Daiki Ito (Deloitte Tohmatsu Cyber LLC), Takumi Fukunaga (Deloitte Tohmatsu Cyber LLC), Takuya Watanabe (Deloitte Tohmatsu Cyber LLC), Yuta Takata (Deloitte Tohmatsu Cyber LLC), Masaki Kamizono (Deloitte Tohmatsu Cyber LLC), Tatsuya Mori (Waseda University, NICT, RIKEN AIP)

Companies publish privacy policies to improve transparency regarding the handling of personal information. A discrepancy between the description of the privacy policy and the user’s understanding can lead to a risk of a decrease in trust. Therefore, in creating a privacy policy, the user’s understanding of the privacy policy should be evaluated. However, the periodic evaluation of privacy policies through user studies takes time and incurs financial costs. In this study, we investigated the understandability of privacy policies by large language models (LLMs) and the gaps between their understanding and that of users, as a first step towards replacing user studies with evaluation using LLMs. Obfuscated privacy policies were prepared along with questions to measure the comprehension of LLMs and users. In comparing the comprehension levels of LLMs and users, the average correct answer rates were 85.2% and 63.0%, respectively. The questions that LLMs answered incorrectly were also answered incorrectly by users, indicating that LLMs can detect descriptions that users tend to misunderstand. By contrast, LLMs understood the technical terms used in privacy policies, whereas users did not. The identified gaps in comprehension between LLMs and users, provide insights into the potential of automating privacy policy evaluations using LLMs.

View More Papers

Vision: Towards Fully Shoulder-Surfing Resistant and Usable Authentication for...

Tobias Länge (Karlsruhe Institute of Technology), Philipp Matheis (Karlsruhe Institute of Technology), Reyhan Düzgün (Ruhr University Bochum), Melanie Volkamer (Karlsruhe Institute of Technology), Peter Mayer (Karlsruhe Institute of Technology, University of Southern Denmark)

Read More

Passive Inference Attacks on Split Learning via Adversarial Regularization

Xiaochen Zhu (National University of Singapore & Massachusetts Institute of Technology), Xinjian Luo (National University of Singapore & Mohamed bin Zayed University of Artificial Intelligence), Yuncheng Wu (Renmin University of China), Yangfan Jiang (National University of Singapore), Xiaokui Xiao (National University of Singapore), Beng Chin Ooi (National University of Singapore)

Read More

No Source Code? No Problem! Twenty Years of Research...

Jack W. Davidson, Professor of Computer Science in the School of Engineering and Applied Science, University of Virginia

Read More

LLMPirate: LLMs for Black-box Hardware IP Piracy

Vasudev Gohil (Texas A&M University), Matthew DeLorenzo (Texas A&M University), Veera Vishwa Achuta Sai Venkat Nallam (Texas A&M University), Joey See (Texas A&M University), Jeyavijayan Rajendran (Texas A&M University)

Read More