Dhananjai Bajpai (Marquette University), Keyang Yu (Marquette University)

Internet of Things (IoT) devices have been expanding rapidly and significantly improved the automation and convenience in modern smart homes. Such functionalities are supported by large amount of data collection, analysis and sharing, which may bring privacy threat to the smart home users. It is crucial to identify unauthorized traffic volume data generated by IoT device, to help user better understand the privacy threat to their IoT environment. This paper presents a cost-effective approach to monitoring data-sharing activities of household IoT devices using the Cisco OpenDNS platform. We have analyzed the Internet traffic data generated from four popular devices to identify unauthorized third-party data sharing. We have discovered that such data sharing exists in multiple types of IoT devices installed in the smart home, the Smart TVs are sharing user-specific viewing data with third parties without user’s consent, iPhone exhibits involuntary synchronization, and the IoT Plugs also show no unauthorized connection behavior. This user-specific, deployable pipeline contrasts with prior testbeddependent studies and highlights the need for transparent data governance.

View More Papers

A Multifaceted Study on the Use of TLS and...

Ka Fun Tang (The Chinese University of Hong Kong), Che Wei Tu (The Chinese University of Hong Kong), Sui Ling Angela Mak (The Chinese University of Hong Kong), Sze Yiu Chau (The Chinese University of Hong Kong)

Read More

Decoupling Permission Management from Cryptography for Privacy-Preserving Systems

Ruben De Smet (Department of Engineering Technology (INDI), Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel), Tom Godden (Department of Engineering Technology (INDI), Vrije Universiteit Brussel), Kris Steenhaut (Department of Engineering Technology (INDI), Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel), An Braeken (Department of Engineering Technology (INDI), Vrije Universiteit Brussel)

Read More

Passive Inference Attacks on Split Learning via Adversarial Regularization

Xiaochen Zhu (National University of Singapore & Massachusetts Institute of Technology), Xinjian Luo (National University of Singapore & Mohamed bin Zayed University of Artificial Intelligence), Yuncheng Wu (Renmin University of China), Yangfan Jiang (National University of Singapore), Xiaokui Xiao (National University of Singapore), Beng Chin Ooi (National University of Singapore)

Read More