Dhananjai Bajpai (Marquette University), Keyang Yu (Marquette University)

Internet of Things (IoT) devices have been expanding rapidly and significantly improved the automation and convenience in modern smart homes. Such functionalities are supported by large amount of data collection, analysis and sharing, which may bring privacy threat to the smart home users. It is crucial to identify unauthorized traffic volume data generated by IoT device, to help user better understand the privacy threat to their IoT environment. This paper presents a cost-effective approach to monitoring data-sharing activities of household IoT devices using the Cisco OpenDNS platform. We have analyzed the Internet traffic data generated from four popular devices to identify unauthorized third-party data sharing. We have discovered that such data sharing exists in multiple types of IoT devices installed in the smart home, the Smart TVs are sharing user-specific viewing data with third parties without user’s consent, iPhone exhibits involuntary synchronization, and the IoT Plugs also show no unauthorized connection behavior. This user-specific, deployable pipeline contrasts with prior testbeddependent studies and highlights the need for transparent data governance.

View More Papers

Retrofitting XoM for Stripped Binaries without Embedded Data Relocation

Chenke Luo (Wuhan University), Jiang Ming (Tulane University), Mengfei Xie (Wuhan University), Guojun Peng (Wuhan University), Jianming Fu (Wuhan University)

Read More

Mysticeti: Reaching the Latency Limits with Uncertified DAGs

Kushal Babel (Cornell Tech & IC3), Andrey Chursin (Mysten Labs), George Danezis (Mysten Labs & University College London (UCL)), Anastasios Kichidis (Mysten Labs), Lefteris Kokoris-Kogias (Mysten Labs & IST Austria), Arun Koshy (Mysten Labs), Alberto Sonnino (Mysten Labs & University College London (UCL)), Mingwei Tian (Mysten Labs)

Read More

Vision: Towards True User-Centric Design for Digital Identity Wallets

Yorick Last (Paderborn University), Patricia Arias Cabarcos (Paderborn University)

Read More

ERW-Radar: An Adaptive Detection System against Evasive Ransomware by...

Lingbo Zhao (Institute of Information Engineering, Chinese Academy of Sciences), Yuhui Zhang (Institute of Information Engineering, Chinese Academy of Sciences), Zhilu Wang (Institute of Information Engineering, Chinese Academy of Sciences), Fengkai Yuan (Institute of Information Engineering, CAS), Rui Hou (Institute of Information Engineering, Chinese Academy of Sciences)

Read More