Dhananjai Bajpai (Marquette University), Keyang Yu (Marquette University)

Internet of Things (IoT) devices have been expanding rapidly and significantly improved the automation and convenience in modern smart homes. Such functionalities are supported by large amount of data collection, analysis and sharing, which may bring privacy threat to the smart home users. It is crucial to identify unauthorized traffic volume data generated by IoT device, to help user better understand the privacy threat to their IoT environment. This paper presents a cost-effective approach to monitoring data-sharing activities of household IoT devices using the Cisco OpenDNS platform. We have analyzed the Internet traffic data generated from four popular devices to identify unauthorized third-party data sharing. We have discovered that such data sharing exists in multiple types of IoT devices installed in the smart home, the Smart TVs are sharing user-specific viewing data with third parties without user’s consent, iPhone exhibits involuntary synchronization, and the IoT Plugs also show no unauthorized connection behavior. This user-specific, deployable pipeline contrasts with prior testbeddependent studies and highlights the need for transparent data governance.

View More Papers

Revealing the Black Box of Device Search Engine: Scanning...

Mengying Wu (Fudan University), Geng Hong (Fudan University), Jinsong Chen (Fudan University), Qi Liu (Fudan University), Shujun Tang (QI-ANXIN Technology Research Institute; Tsinghua University), Youhao Li (QI-ANXIN Technology Research Institute), Baojun Liu (Tsinghua University), Haixin Duan (Tsinghua University; Quancheng Laboratory), Min Yang (Fudan University)

Read More

A Systematic Evaluation of Novel and Existing Cache Side...

Fabian Rauscher (Graz University of Technology), Carina Fiedler (Graz University of Technology), Andreas Kogler (Graz University of Technology), Daniel Gruss (Graz University of Technology)

Read More

Security Signals: Making Web Security Posture Measurable at Scale

Michele Spagnuolo (Google), David Dworken (Google), Artur Janc (Google), Santiago Díaz (Google), Lukas Weichselbaum (Google)

Read More

An Empirical Study on Fingerprint API Misuse with Lifecycle...

Xin Zhang (Fudan University), Xiaohan Zhang (Fudan University), Zhichen Liu (Fudan University), Bo Zhao (Fudan University), Zhemin Yang (Fudan University), Min Yang (Fudan University)

Read More