Dhananjai Bajpai (Marquette University), Keyang Yu (Marquette University)

Internet of Things (IoT) devices have been expanding rapidly and significantly improved the automation and convenience in modern smart homes. Such functionalities are supported by large amount of data collection, analysis and sharing, which may bring privacy threat to the smart home users. It is crucial to identify unauthorized traffic volume data generated by IoT device, to help user better understand the privacy threat to their IoT environment. This paper presents a cost-effective approach to monitoring data-sharing activities of household IoT devices using the Cisco OpenDNS platform. We have analyzed the Internet traffic data generated from four popular devices to identify unauthorized third-party data sharing. We have discovered that such data sharing exists in multiple types of IoT devices installed in the smart home, the Smart TVs are sharing user-specific viewing data with third parties without user’s consent, iPhone exhibits involuntary synchronization, and the IoT Plugs also show no unauthorized connection behavior. This user-specific, deployable pipeline contrasts with prior testbeddependent studies and highlights the need for transparent data governance.

View More Papers

The Power of Words: A Comprehensive Analysis of Rationales...

Yusra Elbitar (CISPA Helmholtz Center for Information Security), Alexander Hart (CISPA Helmholtz Center for Information Security), Sven Bugiel (CISPA Helmholtz Center for Information Security)

Read More

Vulnerability, Where Art Thou? An Investigation of Vulnerability Management...

Daniel Klischies (Ruhr University Bochum), Philipp Mackensen (Ruhr University Bochum), Veelasha Moonsamy (Ruhr University Bochum)

Read More

Privacy Preserved Integrated Big Data Analytics Framework Using Federated...

Sarah Kaleem (Prince Sultan University, PSU) Awais Ahmad (Imam Mohammad Ibn Saud Islamic University, IMSIU), Muhammad Babar (Prince Sultan University, PSU), Goutham Reddy Alavalapati (University of Illinois, Springfield)

Read More

Revisiting Concept Drift in Windows Malware Detection: Adaptation to...

Adrian Shuai Li (Purdue University), Arun Iyengar (Intelligent Data Management and Analytics, LLC), Ashish Kundu (Cisco Research), Elisa Bertino (Purdue University)

Read More