Fengchen Yang (Zhejiang University), Wenze Cui (Zhejiang University), Xinfeng Li (Zhejiang University), Chen Yan (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University)

Fluorescent lamps are almost everywhere for electric lighting in daily life, across private and public scenarios. Our study uncovers a new electromagnetic interference (EMI) attack surface that these light sources are actually able to manipulate nearby IoT devices in a contactless way. Different from previous EMI attempts requiring a specialized metal antenna as the emission source, which can easily alert victims, we introduce LightAntenna that leverages unaltered everyday fluorescent lamps to launch concealed EMI attacks. To understand why and how fluorescent lamps can be exploited as malicious antennas, we systematically characterize the rationale of EMI emission from fluorescent lamps and identify their capabilities and limits in terms of intensity and frequency response. Moreover, we carefully design a covert method of injecting high-frequency signals into the fluorescent tube via power line transmission. In this way, LightAntenna can realize controllable EMI attacks even across rooms and at a distance of up to 20 m. Our extensive experiments demonstrate the generality, practicality, tunability, and remote attack capability of LightAntenna, which successfully interferes with various types of sensors and IoT devices. In summary, our study provides a comprehensive analysis of the LightAntenna mechanism and proposes defensive strategies to mitigate this emerging attack surface.

View More Papers

Hidden and Lost Control: on Security Design Risks in...

Haoqiang Wang, Yiwei Fang (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences; Indiana University Bloomington), Yichen Liu (Indiana University Bloomington), Ze Jin (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences; Indiana University Bloomington), Emma Delph…

Read More

DShield: Defending against Backdoor Attacks on Graph Neural Networks...

Hao Yu (National University of Defense Technology), Chuan Ma (Chongqing University), Xinhang Wan (National University of Defense Technology), Jun Wang (National University of Defense Technology), Tao Xiang (Chongqing University), Meng Shen (Beijing Institute of Technology, Beijing, China), Xinwang Liu (National University of Defense Technology)

Read More

Poster: Understanding User Acceptance of Privacy Labels: Barriers and...

Jingwen Yan (Clemson University), Mohammed Aldeen (Clemson University), Jalil Harris (Clemson University), Kellen Grossenbacher (Clemson University), Aurore Munyaneza (Texas Tech University), Song Liao (Texas Tech University), Long Cheng (Clemson University)

Read More