Caleb Stewart, Rhonda Gaede, Jeffrey Kulick (University of Alabama in Huntsville)

We present DRAGON, a graph neural network (GNN) that predicts data types for decompiled variables along with a confidence estimate for each prediction. While we only train DRAGON on x64 binaries compiled without optimization, we show that DRAGON generalizes well to all combinations of the x64, x86, ARM64, and ARM architectures compiled across optimization levels O0-O3. We compare DRAGON with two state-of-the-art approaches for binary type inference and demonstrate that DRAGON exhibits a competitive or superior level of accuracy for simple type prediction while also providing useful confidence estimates. We show that the learned confidence estimates produced by DRAGON strongly correlate with accuracy, such that higher confidence predictions generally correspond with a higher level of accuracy than lower confidence predictions.

View More Papers

THEMIS: Regulating Textual Inversion for Personalized Concept Censorship

Yutong Wu (Nanyang Technological University), Jie Zhang (Centre for Frontier AI Research, Agency for Science, Technology and Research (A*STAR), Singapore), Florian Kerschbaum (University of Waterloo), Tianwei Zhang (Nanyang Technological University)

Read More

CASPR: Context-Aware Security Policy Recommendation

Lifang Xiao (Institute of Information Engineering, Chinese Academy of Sciences), Hanyu Wang (Institute of Information Engineering, Chinese Academy of Sciences), Aimin Yu (Institute of Information Engineering, Chinese Academy of Sciences), Lixin Zhao (Institute of Information Engineering, Chinese Academy of Sciences), Dan Meng (Institute of Information Engineering, Chinese Academy of Sciences)

Read More

Incorporating Gradients to Rules: Towards Lightweight, Adaptive Provenance-based Intrusion...

Lingzhi Wang (Northwestern University), Xiangmin Shen (Northwestern University), Weijian Li (Northwestern University), Zhenyuan LI (Zhejiang University), R. Sekar (Stony Brook University), Han Liu (Northwestern University), Yan Chen (Northwestern University)

Read More

Towards Parallel Binary Code Analysis

Xiaozhu Meng (University of Wisconsin-Madison)

Read More