Caleb Stewart, Rhonda Gaede, Jeffrey Kulick (University of Alabama in Huntsville)

We present DRAGON, a graph neural network (GNN) that predicts data types for decompiled variables along with a confidence estimate for each prediction. While we only train DRAGON on x64 binaries compiled without optimization, we show that DRAGON generalizes well to all combinations of the x64, x86, ARM64, and ARM architectures compiled across optimization levels O0-O3. We compare DRAGON with two state-of-the-art approaches for binary type inference and demonstrate that DRAGON exhibits a competitive or superior level of accuracy for simple type prediction while also providing useful confidence estimates. We show that the learned confidence estimates produced by DRAGON strongly correlate with accuracy, such that higher confidence predictions generally correspond with a higher level of accuracy than lower confidence predictions.

View More Papers

Query Privacy in Data Spaces

Shuwen Liu (School of Data Science, The Chinese University of Hong Kong, Shenzhen, China), George C. Polyzos (School of Data Science, The Chinese University of Hong Kong, Shenzhen, China and ExcID P.C., Athens, Greece)

Read More

I know what you MEME! Understanding and Detecting Harmful...

Yong Zhuang (Wuhan University), Keyan Guo (University at Buffalo), Juan Wang (Wuhan University), Yiheng Jing (Wuhan University), Xiaoyang Xu (Wuhan University), Wenzhe Yi (Wuhan University), Mengda Yang (Wuhan University), Bo Zhao (Wuhan University), Hongxin Hu (University at Buffalo)

Read More

TWINFUZZ: Differential Testing of Video Hardware Acceleration Stacks

Matteo Leonelli (CISPA Helmholtz Center for Information Security), Addison Crump (CISPA Helmholtz Center for Information Security), Meng Wang (CISPA Helmholtz Center for Information Security), Florian Bauckholt (CISPA Helmholtz Center for Information Security), Keno Hassler (CISPA Helmholtz Center for Information Security), Ali Abbasi (CISPA Helmholtz Center for Information Security), Thorsten Holz (CISPA Helmholtz Center for Information…

Read More