Caleb Stewart, Rhonda Gaede, Jeffrey Kulick (University of Alabama in Huntsville)

We present DRAGON, a graph neural network (GNN) that predicts data types for decompiled variables along with a confidence estimate for each prediction. While we only train DRAGON on x64 binaries compiled without optimization, we show that DRAGON generalizes well to all combinations of the x64, x86, ARM64, and ARM architectures compiled across optimization levels O0-O3. We compare DRAGON with two state-of-the-art approaches for binary type inference and demonstrate that DRAGON exhibits a competitive or superior level of accuracy for simple type prediction while also providing useful confidence estimates. We show that the learned confidence estimates produced by DRAGON strongly correlate with accuracy, such that higher confidence predictions generally correspond with a higher level of accuracy than lower confidence predictions.

View More Papers

Binary Mutation Analysis of Tests Using Reassembleable Disassembly

Navid Emamdoost (University of Minnesota), Vaibhav Sharma (University of Minnesota), Taejoon Byun (University of Minnesota), Stephen McCamant (University of Minnesota)

Read More

Poster: Securing IoT Edge Devices: Applying NIST IR 8259A...

Rahul Choutapally, Konika Reddy Saddikuti, Solomon Berhe (University of the Pacific)

Read More

BumbleBee: Secure Two-party Inference Framework for Large Transformers

Wen-jie Lu (Ant Group), Zhicong Huang (Ant Group), Zhen Gu (Alibaba Group), Jingyu Li (Ant Group & Zhejiang University), Jian Liu (Zhejiang University), Cheng Hong (Ant Group), Kui Ren (Zhejiang University), Tao Wei (Ant Group), WenGuang Chen (Ant Group)

Read More

Dissecting Payload-based Transaction Phishing on Ethereum

Zhuo Chen (Zhejiang University), Yufeng Hu (Zhejiang University), Bowen He (Zhejiang University), Dong Luo (Zhejiang University), Lei Wu (Zhejiang University), Yajin Zhou (Zhejiang University)

Read More