Caleb Stewart, Rhonda Gaede, Jeffrey Kulick (University of Alabama in Huntsville)

We present DRAGON, a graph neural network (GNN) that predicts data types for decompiled variables along with a confidence estimate for each prediction. While we only train DRAGON on x64 binaries compiled without optimization, we show that DRAGON generalizes well to all combinations of the x64, x86, ARM64, and ARM architectures compiled across optimization levels O0-O3. We compare DRAGON with two state-of-the-art approaches for binary type inference and demonstrate that DRAGON exhibits a competitive or superior level of accuracy for simple type prediction while also providing useful confidence estimates. We show that the learned confidence estimates produced by DRAGON strongly correlate with accuracy, such that higher confidence predictions generally correspond with a higher level of accuracy than lower confidence predictions.

View More Papers

Sn4ke: Practical Mutation Analysis of Tests at Binary Level

Mohsen Ahmadi (Arizona State University), Pantea Kiaei (Worcester Polytechnic Institute), Navid Emamdoost (University of Minnesota)

Read More

MOBIDOJO: A Virtual Security Combat Platform for 5G Cellular...

Hyunwoo Lee (Ohio State University), Haohuang Wen (Ohio State University), Phillip Porras (SRI), Vinod Yegneswaran (SRI), Ashish Gehani (SRI), Prakhar Sharma (SRI), Zhiqiang Lin (Ohio State University)

Read More

On the Robustness of LDP Protocols for Numerical Attributes...

Xiaoguang Li (Xidian University, Purdue University), Zitao Li (Alibaba Group (U.S.) Inc.), Ninghui Li (Purdue University), Wenhai Sun (Purdue University, West Lafayette, USA)

Read More

GadgetMeter: Quantitatively and Accurately Gauging the Exploitability of Speculative...

Qi Ling (Purdue University), Yujun Liang (Tsinghua University), Yi Ren (Tsinghua University), Baris Kasikci (University of Washington and Google), Shuwen Deng (Tsinghua University)

Read More