Sima Arasteh (University of Southern California), Pegah Jandaghi, Nicolaas Weideman (University of Southern California/Information Sciences Institute), Dennis Perepech, Mukund Raghothaman (University of Southern California), Christophe Hauser (Dartmouth College), Luis Garcia (University of Utah Kahlert School of Computing)

The software compilation process has a tendency to obscure the original design of the system and makes it difficult both to identify individual components and discern their purpose simply by examining the resulting binary code. Although decompilation techniques attempt to recover higherlevel source code from the machine code in question, they are not fully able to restore the semantics of the original functions. Furthermore, binaries are often stripped of metadata, and this makes it challenging to reverse engineer complex binary software.
In this paper we show how a combination of binary decomposition techniques, decompilation passes, and LLM-powered function summarization can be used to build an economical engine to identify modules in stripped binaries and associate them with high-level natural language descriptions. We instantiated this technique with three underlying open-source LLMs—CodeQwen, DeepSeek-Coder and CodeStral—and measured its effectiveness in identifying modules in robotics firmware. This experimental evaluation involved 467 modules from four devices from the ArduPilot software suite, and showed that CodeStral, the bestperforming backend LLM, achieves an average F1-score of 0.68 with an online running time of just a handful of seconds.

View More Papers

LeoCommon – A Ground Station Observatory Network for LEO...

Eric Jedermann, Martin Böh (University of Kaiserslautern), Martin Strohmeier (armasuisse Science & Technology), Vincent Lenders (Cyber-Defence Campus, armasuisse Science & Technology), Jens Schmitt (University of Kaiserslautern)

Read More

IoT Software Updates: User Perspectives in the Context of...

S. P. Veed, S. M. Daftary, B. Singh, M. Rudra, S. Berhe (University of the Pacific), M. Maynard (Data Independence LLC) F. Khomh (Polytechnique Montreal)

Read More

Manifoldchain: Maximizing Blockchain Throughput via Bandwidth-Clustered Sharding

Chunjiang Che (The Hong Kong University of Science and Technology (Guangzhou)), Songze Li (Southeast University), Xuechao Wang (The Hong Kong University of Science and Technology (Guangzhou))

Read More

On the Realism of LiDAR Spoofing Attacks against Autonomous...

Takami Sato (University of California, Irvine), Ryo Suzuki (Keio University), Yuki Hayakawa (Keio University), Kazuma Ikeda (Keio University), Ozora Sako (Keio University), Rokuto Nagata (Keio University), Ryo Yoshida (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

Read More