Sima Arasteh (University of Southern California), Pegah Jandaghi, Nicolaas Weideman (University of Southern California/Information Sciences Institute), Dennis Perepech, Mukund Raghothaman (University of Southern California), Christophe Hauser (Dartmouth College), Luis Garcia (University of Utah Kahlert School of Computing)

The software compilation process has a tendency to obscure the original design of the system and makes it difficult both to identify individual components and discern their purpose simply by examining the resulting binary code. Although decompilation techniques attempt to recover higherlevel source code from the machine code in question, they are not fully able to restore the semantics of the original functions. Furthermore, binaries are often stripped of metadata, and this makes it challenging to reverse engineer complex binary software.
In this paper we show how a combination of binary decomposition techniques, decompilation passes, and LLM-powered function summarization can be used to build an economical engine to identify modules in stripped binaries and associate them with high-level natural language descriptions. We instantiated this technique with three underlying open-source LLMs—CodeQwen, DeepSeek-Coder and CodeStral—and measured its effectiveness in identifying modules in robotics firmware. This experimental evaluation involved 467 modules from four devices from the ArduPilot software suite, and showed that CodeStral, the bestperforming backend LLM, achieves an average F1-score of 0.68 with an online running time of just a handful of seconds.

View More Papers

Vision: Comparison of AI-assisted Policy Development Between Professionals and...

Rishika Thorat (Purdue University), Tatiana Ringenberg (Purdue University)

Read More

Starshields for iOS: Navigating the Security Cosmos in Satellite...

Jiska Classen (Hasso Plattner Institute, University of Potsdam), Alexander Heinrich (TU Darmstadt, Germany), Fabian Portner (TU Darmstadt, Germany), Felix Rohrbach (TU Darmstadt, Germany), Matthias Hollick (TU Darmstadt, Germany)

Read More

GadgetMeter: Quantitatively and Accurately Gauging the Exploitability of Speculative...

Qi Ling (Purdue University), Yujun Liang (Tsinghua University), Yi Ren (Tsinghua University), Baris Kasikci (University of Washington and Google), Shuwen Deng (Tsinghua University)

Read More

AlphaDog: No-Box Camouflage Attacks via Alpha Channel Oversight

Qi Xia (University of Texas at San Antonio), Qian Chen (University of Texas at San Antonio)

Read More