Sima Arasteh (University of Southern California), Pegah Jandaghi, Nicolaas Weideman (University of Southern California/Information Sciences Institute), Dennis Perepech, Mukund Raghothaman (University of Southern California), Christophe Hauser (Dartmouth College), Luis Garcia (University of Utah Kahlert School of Computing)

The software compilation process has a tendency to obscure the original design of the system and makes it difficult both to identify individual components and discern their purpose simply by examining the resulting binary code. Although decompilation techniques attempt to recover higherlevel source code from the machine code in question, they are not fully able to restore the semantics of the original functions. Furthermore, binaries are often stripped of metadata, and this makes it challenging to reverse engineer complex binary software.
In this paper we show how a combination of binary decomposition techniques, decompilation passes, and LLM-powered function summarization can be used to build an economical engine to identify modules in stripped binaries and associate them with high-level natural language descriptions. We instantiated this technique with three underlying open-source LLMs—CodeQwen, DeepSeek-Coder and CodeStral—and measured its effectiveness in identifying modules in robotics firmware. This experimental evaluation involved 467 modules from four devices from the ArduPilot software suite, and showed that CodeStral, the bestperforming backend LLM, achieves an average F1-score of 0.68 with an online running time of just a handful of seconds.

View More Papers

Symbolic Path Tracing to Find Android Permission-Use Triggers

Kristopher Micinski (Haverford College), Thomas Gilray (University of Alabama, Birmingham), Daniel Votipka (University of Maryland), Michelle L. Mazurek (University of Maryland), Jeffrey S. Foster (Tufts University)

Read More

CASPR: Context-Aware Security Policy Recommendation

Lifang Xiao (Institute of Information Engineering, Chinese Academy of Sciences), Hanyu Wang (Institute of Information Engineering, Chinese Academy of Sciences), Aimin Yu (Institute of Information Engineering, Chinese Academy of Sciences), Lixin Zhao (Institute of Information Engineering, Chinese Academy of Sciences), Dan Meng (Institute of Information Engineering, Chinese Academy of Sciences)

Read More

It Doesn’t Have to Be So Hard: Efficient Symbolic...

Vaibhav Sharma (University of Minnesota), Navid Emamdoost (University of Minnesota), Seonmo Kim (University of Minnesota), Stephen McCamant (University of Minnesota)

Read More

Tweezers: A Framework for Security Event Detection via Event...

Jian Cui (Indiana University), Hanna Kim (KAIST), Eugene Jang (S2W Inc.), Dayeon Yim (S2W Inc.), Kicheol Kim (S2W Inc.), Yongjae Lee (S2W Inc.), Jin-Woo Chung (S2W Inc.), Seungwon Shin (KAIST), Xiaojing Liao (Indiana University)

Read More