Linxi Jiang (The Ohio State University), Xin Jin (The Ohio State University), Zhiqiang Lin (The Ohio State University)

Function name inference in stripped binaries is an important yet challenging task for many security applications, such as malware analysis and vulnerability discovery, due to the need to grasp binary code semantics amidst diverse instruction sets, architectures, compiler optimizations, and obfuscations. While machine learning has made significant progress in this field, existing methods often struggle with unseen data, constrained by their reliance on a limited vocabulary-based classification approach. In this paper, we present SymGen, a novel framework employing an autoregressive generation paradigm powered by domain-adapted generative large language models (LLMs) for enhanced binary code interpretation. We have evaluated SymGen on a dataset comprising 2,237,915 binary functions across four architectures (x86-64, x86-32, ARM, MIPS) with four levels of optimizations (O0-O3) where it surpasses the state-of-the-art with up to 409.3%, 553.5%, and 489.4% advancement in precision, recall, and F1 score, respectively, showing superior effectiveness and generalizability. Our ablation and case studies also demonstrate the significant performance boosts achieved by our design, e.g., the domain adaptation approach, alongside showcasing SymGen’s practicality in analyzing real-world binaries, e.g., obfuscated binaries and malware executables.

View More Papers

Crosstalk-induced Side Channel Threats in Multi-Tenant NISQ Computers

Ruixuan Li (Choudhury), Chaithanya Naik Mude (University of Wisconsin-Madison), Sanjay Das (The University of Texas at Dallas), Preetham Chandra Tikkireddi (University of Wisconsin-Madison), Swamit Tannu (University of Wisconsin, Madison), Kanad Basu (University of Texas at Dallas)

Read More

Revisiting Concept Drift in Windows Malware Detection: Adaptation to...

Adrian Shuai Li (Purdue University), Arun Iyengar (Intelligent Data Management and Analytics, LLC), Ashish Kundu (Cisco Research), Elisa Bertino (Purdue University)

Read More

type++: Prohibiting Type Confusion with Inline Type Information

Nicolas Badoux (EPFL), Flavio Toffalini (Ruhr-Universität Bochum, EPFL), Yuseok Jeon (UNIST), Mathias Payer (EPFL)

Read More

Blackbox Fuzzing of Distributed Systems with Multi-Dimensional Inputs and...

Yonghao Zou (Beihang University and Peking University), Jia-Ju Bai (Beihang University), Zu-Ming Jiang (ETH Zurich), Ming Zhao (Arizona State University), Diyu Zhou (Peking University)

Read More