Linxi Jiang (The Ohio State University), Xin Jin (The Ohio State University), Zhiqiang Lin (The Ohio State University)

Function name inference in stripped binaries is an important yet challenging task for many security applications, such as malware analysis and vulnerability discovery, due to the need to grasp binary code semantics amidst diverse instruction sets, architectures, compiler optimizations, and obfuscations. While machine learning has made significant progress in this field, existing methods often struggle with unseen data, constrained by their reliance on a limited vocabulary-based classification approach. In this paper, we present SymGen, a novel framework employing an autoregressive generation paradigm powered by domain-adapted generative large language models (LLMs) for enhanced binary code interpretation. We have evaluated SymGen on a dataset comprising 2,237,915 binary functions across four architectures (x86-64, x86-32, ARM, MIPS) with four levels of optimizations (O0-O3) where it surpasses the state-of-the-art with up to 409.3%, 553.5%, and 489.4% advancement in precision, recall, and F1 score, respectively, showing superior effectiveness and generalizability. Our ablation and case studies also demonstrate the significant performance boosts achieved by our design, e.g., the domain adaptation approach, alongside showcasing SymGen’s practicality in analyzing real-world binaries, e.g., obfuscated binaries and malware executables.

View More Papers

Keynote talk by Prof. Gene Tsudik (University of California,...

Dr. Gene Tsudik, Distinguished Professor of Computer Science, University of California, Irvine

Read More

DLBox: New Model Training Framework for Protecting Training Data

Jaewon Hur (Seoul National University), Juheon Yi (Nokia Bell Labs, Cambridge, UK), Cheolwoo Myung (Seoul National University), Sangyun Kim (Seoul National University), Youngki Lee (Seoul National University), Byoungyoung Lee (Seoul National University)

Read More

ReThink: Reveal the Threat of Electromagnetic Interference on Power...

Fengchen Yang (Zhejiang University; ZJU QI-ANXIN IoT Security Joint Labratory), Zihao Dan (Zhejiang University; ZJU QI-ANXIN IoT Security Joint Labratory), Kaikai Pan (Zhejiang University; ZJU QI-ANXIN IoT Security Joint Labratory), Chen Yan (Zhejiang University; ZJU QI-ANXIN IoT Security Joint Labratory), Xiaoyu Ji (Zhejiang University; ZJU QI-ANXIN IoT Security Joint Labratory), Wenyuan Xu (Zhejiang University; ZJU…

Read More

Revisiting Concept Drift in Windows Malware Detection: Adaptation to...

Adrian Shuai Li (Purdue University), Arun Iyengar (Intelligent Data Management and Analytics, LLC), Ashish Kundu (Cisco Research), Elisa Bertino (Purdue University)

Read More