Yongpan Wang (Institute of Information Engineering Chinese Academy of Sciences & University of Chinese Academy of Sciences, China), Hong Li (Institute of Information Engineering Chinese Academy of Sciences & University of Chinese Academy of Sciences, China), Xiaojie Zhu (King Abdullah University of Science and Technology, Thuwal, Saudi Arabia), Siyuan Li (Institute of Information Engineering Chinese Academy of Sciences & University of Chinese Academy of Sciences, China), Chaopeng Dong (Institute of Information Engineering Chinese Academy of Sciences & University of Chinese Academy of Sciences, China), Shouguo Yang (Zhongguancun Laboratory, Beijing, China), Kangyuan Qin (Institute of Information Engineering Chinese Academy of Sciences & University of Chinese Academy of Sciences, China)

Binary code search plays a crucial role in applications like software reuse detection, and vulnerability identification. Currently, existing models are typically based on either internal code semantics or a combination of function call graphs (CG) and internal code semantics. However, these models have limitations. Internal code semantic models only consider the semantics within the function, ignoring the inter-function semantics, making it difficult to handle situations such as function inlining. The combination of CG and internal code semantics is insufficient for addressing complex real-world scenarios. To address these limitations, we propose BINENHANCE, a novel framework designed to leverage the inter-function semantics to enhance the expression of internal code semantics for binary code search. Specifically, BINENHANCE constructs an External Environment Semantic Graph (EESG), which establishes a stable and analogous external environment for homologous functions by using different inter-function semantic relation (textit{e.g.}, textit{call}, textit{location}, textit{data-co-use}). After the construction of EESG, we utilize the embeddings generated by existing internal code semantic models to initialize EESG nodes. Finally, we design a Semantic Enhancement Model (SEM) that uses Relational Graph Convolutional Networks (RGCNs) and a residual block to learn valuable external semantics on the EESG for generating the enhanced semantics embedding. In addition, BinEnhance utilizes data feature similarity to refine the cosine similarity of semantic embeddings. We conduct experiments under six different tasks (textit{e.g.}, under textit{function inlining} scenario) and the results illustrate the performance and robustness of BINENHANCE. The application of BinEnhance to HermesSim, Asm2vec, TREX, Gemini, and Asteria on two public datasets results in an improvement of Mean Average Precision (MAP) from 53.6% to 69.7%. Moreover, the efficiency increases fourfold.

View More Papers

LeakLess: Selective Data Protection against Memory Leakage Attacks for...

Maryam Rostamipoor (Stony Brook University), Seyedhamed Ghavamnia (University of Connecticut), Michalis Polychronakis (Stony Brook University)

Read More

The (Un)usual Suspects – Studying Reasons for Lacking Updates...

Maria Hellenthal (CISPA Helmholtz Center for Information Security), Lena Gotsche (CISPA Helmholtz Center for Information Security), Rafael Mrowczynski (CISPA Helmholtz Center for Information Security), Sarah Kugel (Saarland University), Michael Schilling (CISPA Helmholtz Center for Information Security), Ben Stock (CISPA Helmholtz Center for Information Security)

Read More

ICSQuartz: Scan Cycle-Aware and Vendor-Agnostic Fuzzing for Industrial Control...

Corban Villa (New York University Abu Dhabi), Constantine Doumanidis (New York University Abu Dhabi), Hithem Lamri (New York University Abu Dhabi), Prashant Hari Narayan Rajput (InterSystems), Michail Maniatakos (New York University Abu Dhabi)

Read More

Ctrl+Alt+Deceive: Quantifying User Exposure to Online Scams

Platon Kotzias (Norton Research Group, BforeAI), Michalis Pachilakis (Norton Research Group, Computer Science Department University of Crete), Javier Aldana Iuit (Norton Research Group), Juan Caballero (IMDEA Software Institute), Iskander Sanchez-Rola (Norton Research Group), Leyla Bilge (Norton Research Group)

Read More