Yongpan Wang (Institute of Information Engineering Chinese Academy of Sciences & University of Chinese Academy of Sciences, China), Hong Li (Institute of Information Engineering Chinese Academy of Sciences & University of Chinese Academy of Sciences, China), Xiaojie Zhu (King Abdullah University of Science and Technology, Thuwal, Saudi Arabia), Siyuan Li (Institute of Information Engineering Chinese Academy of Sciences & University of Chinese Academy of Sciences, China), Chaopeng Dong (Institute of Information Engineering Chinese Academy of Sciences & University of Chinese Academy of Sciences, China), Shouguo Yang (Zhongguancun Laboratory, Beijing, China), Kangyuan Qin (Institute of Information Engineering Chinese Academy of Sciences & University of Chinese Academy of Sciences, China)

Binary code search plays a crucial role in applications like software reuse detection, and vulnerability identification. Currently, existing models are typically based on either internal code semantics or a combination of function call graphs (CG) and internal code semantics. However, these models have limitations. Internal code semantic models only consider the semantics within the function, ignoring the inter-function semantics, making it difficult to handle situations such as function inlining. The combination of CG and internal code semantics is insufficient for addressing complex real-world scenarios. To address these limitations, we propose BINENHANCE, a novel framework designed to leverage the inter-function semantics to enhance the expression of internal code semantics for binary code search. Specifically, BINENHANCE constructs an External Environment Semantic Graph (EESG), which establishes a stable and analogous external environment for homologous functions by using different inter-function semantic relation (textit{e.g.}, textit{call}, textit{location}, textit{data-co-use}). After the construction of EESG, we utilize the embeddings generated by existing internal code semantic models to initialize EESG nodes. Finally, we design a Semantic Enhancement Model (SEM) that uses Relational Graph Convolutional Networks (RGCNs) and a residual block to learn valuable external semantics on the EESG for generating the enhanced semantics embedding. In addition, BinEnhance utilizes data feature similarity to refine the cosine similarity of semantic embeddings. We conduct experiments under six different tasks (textit{e.g.}, under textit{function inlining} scenario) and the results illustrate the performance and robustness of BINENHANCE. The application of BinEnhance to HermesSim, Asm2vec, TREX, Gemini, and Asteria on two public datasets results in an improvement of Mean Average Precision (MAP) from 53.6% to 69.7%. Moreover, the efficiency increases fourfold.

View More Papers

DLBox: New Model Training Framework for Protecting Training Data

Jaewon Hur (Seoul National University), Juheon Yi (Nokia Bell Labs, Cambridge, UK), Cheolwoo Myung (Seoul National University), Sangyun Kim (Seoul National University), Youngki Lee (Seoul National University), Byoungyoung Lee (Seoul National University)

Read More

Repurposing Neural Networks for Efficient Cryptographic Computation

Xin Jin (The Ohio State University), Shiqing Ma (University of Massachusetts Amherst), Zhiqiang Lin (The Ohio State University)

Read More

Time-varying Bottleneck Links in LEO Satellite Networks: Identification, Exploits,...

Yangtao Deng (Tsinghua University), Qian Wu (Tsinghua University), Zeqi Lai (Tsinghua University), Chenwei Gu (Tsinghua University), Hewu Li (Tsinghua University), Yuanjie Li (Tsinghua University), Jun Liu (Tsinghua University)

Read More

Rondo: Scalable and Reconfiguration-Friendly Randomness Beacon

Xuanji Meng (Tsinghua University), Xiao Sui (Shandong University), Zhaoxin Yang (Tsinghua University), Kang Rong (Blockchain Platform Division,Ant Group), Wenbo Xu (Blockchain Platform Division,Ant Group), Shenglong Chen (Blockchain Platform Division,Ant Group), Ying Yan (Blockchain Platform Division,Ant Group), Sisi Duan (Tsinghua University)

Read More