Yan Pang (University of Virginia), Tianhao Wang (University of Virginia)

With the rapid advancement of diffusion-based image-generative models, the quality of generated images has become increasingly photorealistic. Moreover, with the release of high-quality pre-trained image-generative models, a growing number of users are downloading these pre-trained models to fine-tune them with downstream datasets for various image-generation tasks. However, employing such powerful pre-trained models in downstream tasks presents significant privacy leakage risks. In this paper, we propose the first scores-based membership inference attack framework tailored for recent diffusion models, and in the more stringent black-box access setting. Considering four distinct attack scenarios and three types of attacks, this framework is capable of targeting any popular conditional generator model, achieving high precision, evidenced by an impressive AUC of 0.95.

View More Papers

ReDAN: An Empirical Study on Remote DoS Attacks against...

Xuewei Feng (Tsinghua University), Yuxiang Yang (Tsinghua University), Qi Li (Tsinghua University), Xingxiang Zhan (Zhongguancun Lab), Kun Sun (George Mason University), Ziqiang Wang (Southeast University), Ao Wang (Southeast University), Ganqiu Du (China Software Testing Center), Ke Xu (Tsinghua University)

Read More

GAP-Diff: Protecting JPEG-Compressed Images from Diffusion-based Facial Customization

Haotian Zhu (Nanjing University of Science and Technology), Shuchao Pang (Nanjing University of Science and Technology), Zhigang Lu (Western Sydney University), Yongbin Zhou (Nanjing University of Science and Technology), Minhui Xue (CSIRO's Data61)

Read More

Impact Tracing: Identifying the Culprit of Misinformation in Encrypted...

Zhongming Wang (Chongqing University), Tao Xiang (Chongqing University), Xiaoguo Li (Chongqing University), Biwen Chen (Chongqing University), Guomin Yang (Singapore Management University), Chuan Ma (Chongqing University), Robert H. Deng (Singapore Management University)

Read More