Yonghao Zou (Beihang University and Peking University), Jia-Ju Bai (Beihang University), Zu-Ming Jiang (ETH Zurich), Ming Zhao (Arizona State University), Diyu Zhou (Peking University)

This paper presents DistFuzz, which, to our knowledge, is the first feedback-guided blackbox fuzzing framework for distributed systems. The novelty of DistFuzz comes from two conceptual contributions on key aspects of distributed system fuzzing: the input space and feedback metrics. Specifically, unlike prior work that focuses on systematically mutating faults, exploiting the request-driven and timing-dependence nature of distributed systems, DistFuzz proposes a multi-dimensional input space by incorporating regular events and relative timing among events as the other two dimensions. Furthermore, observing that important state changes in distributed systems can be indicated by network messages among nodes, DistFuzz utilizes the sequences of network messages with symmetry-based pruning as program feedback, which departs from the conventional wisdom that effective feedback requires code instrumentation/analysis and/or user inputs. DistFuzz finds 52 real bugs in ten popular distributed systems in C/C++, Go, and Java. Among these bugs, 28 have been confirmed by the developers, 20 were unknown before, and 4 have been assigned with CVEs.

View More Papers

Understanding Influences on SMS Phishing Detection: User Behavior, Demographics,...

Daniel Timko (California State University San Marcos), Daniel Hernandez Castillo (California State University San Marcos), Muhammad Lutfor Rahman (California State University San Marcos)

Read More

UI-CTX: Understanding UI Behaviors with Code Contexts for Mobile...

Jiawei Li (Beihang University & National University of Singapore), Jiahao Liu (National University of Singapore), Jian Mao (Beihang University), Jun Zeng (National University of Singapore), Zhenkai Liang (National University of Singapore)

Read More

How Different Tokenization Algorithms Impact LLMs and Transformer Models...

Ahmed Mostafa, Raisul Arefin Nahid, Samuel Mulder (Auburn University)

Read More