Wen-jie Lu (Ant Group), Zhicong Huang (Ant Group), Zhen Gu (Alibaba Group), Jingyu Li (Ant Group & Zhejiang University), Jian Liu (Zhejiang University), Cheng Hong (Ant Group), Kui Ren (Zhejiang University), Tao Wei (Ant Group), WenGuang Chen (Ant Group)

Large transformer-based models have realized state-of-the-art performance on lots of real-world tasks such as natural language processing and computer vision.
However, with the increasing sensitivity of the data and tasks they handle, privacy has become a major concern during model deployment.
In this work, we focus on private inference in two-party settings, where one party holds private inputs and the other holds the model.
We introduce BumbleBee, a fast and communication-friendly two-party private transformer inference system.
Our contributions are three-fold:
First, we propose optimized protocols for matrix multiplication, which significantly reduce communication costs by 80% -- 90% compared to previous techniques.
Secondly, we develop a methodology for constructing efficient protocols tailored to the non-linear activation functions employed in transformer models.
The proposed activation protocols have realized a significant enhancement in processing speed, alongside a remarkable reduction in communication costs by 80% -- 95% compared with two prior methods.
Lastly, we have performed extensive benchmarks on five transformer models.
BumbleBee demonstrates its capability by evaluating the LLaMA-7B model, generating one token in approximately 8 minutes using CPUs.
Our results further reveal that BumbleBee outperforms Iron (NeurIPS22) by over an order of magnitude and is three times faster than BOLT (Oakland24) with one-tenth communication.

View More Papers

FUZZUER: Enabling Fuzzing of UEFI Interfaces on EDK-2

Connor Glosner (Purdue University), Aravind Machiry (Purdue University)

Read More

No Source Code? No Problem! Twenty Years of Research...

Jack W. Davidson, Professor of Computer Science in the School of Engineering and Applied Science, University of Virginia

Read More

DiStefano: Decentralized Infrastructure for Sharing Trusted Encrypted Facts and...

Sofia Celi (Brave Software), Alex Davidson (NOVA LINCS & Universidade NOVA de Lisboa), Hamed Haddadi (Imperial College London & Brave Software), Gonçalo Pestana (Hashmatter), Joe Rowell (Information Security Group, Royal Holloway, University of London)

Read More

Uncovering the iceberg from the tip: Generating API Specifications...

Miaoqian Lin (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Kai Chen (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Yi Yang (Institute of Information Engineering, Chinese Academy of…

Read More