Wen-jie Lu (Ant Group), Zhicong Huang (Ant Group), Zhen Gu (Alibaba Group), Jingyu Li (Ant Group & Zhejiang University), Jian Liu (Zhejiang University), Cheng Hong (Ant Group), Kui Ren (Zhejiang University), Tao Wei (Ant Group), WenGuang Chen (Ant Group)

Large transformer-based models have realized state-of-the-art performance on lots of real-world tasks such as natural language processing and computer vision.
However, with the increasing sensitivity of the data and tasks they handle, privacy has become a major concern during model deployment.
In this work, we focus on private inference in two-party settings, where one party holds private inputs and the other holds the model.
We introduce BumbleBee, a fast and communication-friendly two-party private transformer inference system.
Our contributions are three-fold:
First, we propose optimized protocols for matrix multiplication, which significantly reduce communication costs by 80% -- 90% compared to previous techniques.
Secondly, we develop a methodology for constructing efficient protocols tailored to the non-linear activation functions employed in transformer models.
The proposed activation protocols have realized a significant enhancement in processing speed, alongside a remarkable reduction in communication costs by 80% -- 95% compared with two prior methods.
Lastly, we have performed extensive benchmarks on five transformer models.
BumbleBee demonstrates its capability by evaluating the LLaMA-7B model, generating one token in approximately 8 minutes using CPUs.
Our results further reveal that BumbleBee outperforms Iron (NeurIPS22) by over an order of magnitude and is three times faster than BOLT (Oakland24) with one-tenth communication.

View More Papers

Analysis of Misconfigured IoT MQTT Deployments and a Lightweight...

Seyed Ali Ghazi Asgar, Narasimha Reddy (Texas A&M University)

Read More

Automated Mass Malware Factory: The Convergence of Piggybacking and...

Heng Li (Huazhong University of Science and Technology), Zhiyuan Yao (Huazhong University of Science and Technology), Bang Wu (Huazhong University of Science and Technology), Cuiying Gao (Huazhong University of Science and Technology), Teng Xu (Huazhong University of Science and Technology), Wei Yuan (Huazhong University of Science and Technology), Xiapu Luo (The Hong Kong Polytechnic University)

Read More

BitShield: Defending Against Bit-Flip Attacks on DNN Executables

Yanzuo Chen (The Hong Kong University of Science and Technology), Yuanyuan Yuan (The Hong Kong University of Science and Technology), Zhibo Liu (The Hong Kong University of Science and Technology), Sihang Hu (Huawei Technologies), Tianxiang Li (Huawei Technologies), Shuai Wang (The Hong Kong University of Science and Technology)

Read More

Inspecting Compiler Optimizations on Mixed Boolean Arithmetic Obfuscation

Rachael Little, Dongpeng Xu (University of New Hampshire)

Read More