Wen-jie Lu (Ant Group), Zhicong Huang (Ant Group), Zhen Gu (Alibaba Group), Jingyu Li (Ant Group & Zhejiang University), Jian Liu (Zhejiang University), Cheng Hong (Ant Group), Kui Ren (Zhejiang University), Tao Wei (Ant Group), WenGuang Chen (Ant Group)

Large transformer-based models have realized state-of-the-art performance on lots of real-world tasks such as natural language processing and computer vision.
However, with the increasing sensitivity of the data and tasks they handle, privacy has become a major concern during model deployment.
In this work, we focus on private inference in two-party settings, where one party holds private inputs and the other holds the model.
We introduce BumbleBee, a fast and communication-friendly two-party private transformer inference system.
Our contributions are three-fold:
First, we propose optimized protocols for matrix multiplication, which significantly reduce communication costs by 80% -- 90% compared to previous techniques.
Secondly, we develop a methodology for constructing efficient protocols tailored to the non-linear activation functions employed in transformer models.
The proposed activation protocols have realized a significant enhancement in processing speed, alongside a remarkable reduction in communication costs by 80% -- 95% compared with two prior methods.
Lastly, we have performed extensive benchmarks on five transformer models.
BumbleBee demonstrates its capability by evaluating the LLaMA-7B model, generating one token in approximately 8 minutes using CPUs.
Our results further reveal that BumbleBee outperforms Iron (NeurIPS22) by over an order of magnitude and is three times faster than BOLT (Oakland24) with one-tenth communication.

View More Papers

“Do We Call Them That? Absolutely Not.”: Juxtaposing the...

Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Luca Favaro (Technical University of Munich), and Florian Matthes (Technical University of Munich)

Read More

Victim-Centred Abuse Investigations and Defenses for Social Media Platforms

Zaid Hakami (Florida International University and Jazan University), Ashfaq Ali Shafin (Florida International University), Peter J. Clarke (Florida International University), Niki Pissinou (Florida International University), and Bogdan Carbunar (Florida International University)

Read More

The Skeleton Keys: A Large Scale Analysis of Credential...

Yizhe Shi (Fudan University), Zhemin Yang (Fudan University), Kangwei Zhong (Fudan University), Guangliang Yang (Fudan University), Yifan Yang (Fudan University), Xiaohan Zhang (Fudan University), Min Yang (Fudan University)

Read More

SKILLPoV: Towards Accessible and Effective Privacy Notice for Amazon...

Jingwen Yan (Clemson University), Song Liao (Texas Tech University), Mohammed Aldeen (Clemson University), Luyi Xing (Indiana University Bloomington), Danfeng (Daphne) Yao (Virginia Tech), Long Cheng (Clemson University)

Read More