Seunghyeon Lee (KAIST, S2W LAB Inc.), Changhoon Yoon (S2W LAB Inc.), Heedo Kang (KAIST), Yeonkeun Kim (KAIST), Yongdae Kim (KAIST), Dongsu Han (KAIST), Sooel Son (KAIST), Seungwon Shin (KAIST, S2W LAB Inc.)

The Dark Web is notorious for being a major distribution channel of harmful content as well as unlawful goods. Perpetrators have also used cryptocurrencies to conduct illicit financial transactions while hiding their identities. The limited coverage and outdated data of the Dark Web in previous studies motivated us to conduct an in-depth investigative study to understand how perpetrators abuse cryptocurrencies in the Dark Web. We designed and implemented MFScope, a new framework which collects Dark Web data, extracts cryptocurrency information, and analyzes their usage characteristics on the Dark Web. Specifically, MFScope collected more than 27 million dark webpages and extracted around 10 million unique cryptocurrency addresses for Bitcoin, Ethereum, and Monero. It then classified their usages to identify trades of illicit goods and traced cryptocurrency money flows, to reveal black money operations on the Dark Web. In total, using MFScope we discovered that more than 80% of Bitcoin addresses on the Dark Web were used with malicious intent; their monetary volume was around 180 million USD, and they sent a large sum of their money to several popular cryptocurrency services (e.g., exchange services). Furthermore, we present two real-world unlawful services and demonstrate their Bitcoin transaction traces, which helps in understanding their marketing strategy as well as black money operations.

View More Papers

Digital Healthcare-Associated Infection: A Case Study on the Security...

Luis Vargas (University of Florida), Logan Blue (University of Florida), Vanessa Frost (University of Florida), Christopher Patton (University of Florida), Nolen Scaife (University of Florida), Kevin R.B. Butler (University of Florida), Patrick Traynor (University of Florida)

Read More

ExSpectre: Hiding Malware in Speculative Execution

Jack Wampler (University of Colorado Boulder), Ian Martiny (University of Colorado Boulder), Eric Wustrow (University of Colorado Boulder)

Read More

CRCount: Pointer Invalidation with Reference Counting to Mitigate Use-after-free...

Jangseop Shin (Seoul National University and Inter-University Semiconductor Research Center), Donghyun Kwon (Seoul National University and Inter-University Semiconductor Research Center), Jiwon Seo (Seoul National University and Inter-University Semiconductor Research Center), Yeongpil Cho (Soongsil University), Yunheung Paek (Seoul National University and Inter-University Semiconductor Research Center)

Read More

maTLS: How to Make TLS middlebox-aware?

Hyunwoo Lee (Seoul National University), Zach Smith (University of Luxembourg), Junghwan Lim (Seoul National University), Gyeongjae Choi (Seoul National University), Selin Chun (Seoul National University), Taejoong Chung (Rochester Institute of Technology), Ted "Taekyoung" Kwon (Seoul National University)

Read More