Jiyong Yu (UIUC), Lucas Hsiung (UIUC), Mohamad El'Hajj (UIUC), Christopher W. Fletcher (UIUC)

Blocking microarchitectural (digital) side channels is one of the most pressing challenges in hardware security today. Recently, there has been a surge of effort that attempts to block these leakages by writing programs data obliviously. In this model, programs are written to avoid placing sensitive data-dependent pressure on shared resources. Despite recent efforts, however, running data oblivious programs on modern machines today is insecure and low performance. First, writing programs obliviously assumes certain instructions in today's ISAs will not leak privacy, whereas today's ISAs and hardware provide no such guarantees. Second, writing programs to avoid data-dependent behavior is inherently high performance overhead.

This paper tackles both the security and performance aspects of this problem by proposing a Data Oblivious ISA extension (OISA). On the security side, we present ISA design principles to block microarchitectural side channels, and embody these ideas in a concrete ISA capable of safely executing existing data oblivious programs. On the performance side, we design the OISA with support for efficient memory oblivious computation, and with safety features that allow modern hardware optimizations, e.g., out-of-order speculative execution, to remain enabled in the common case.

We provide a complete hardware prototype of our ideas, built on top of the RISC-V out-of-order, speculative BOOM processor, and prove that the OISA can provide the advertised security through a formal analysis of an abstract BOOM-style machine. We evaluate area overhead of hardware mechanisms needed to support our prototype, and provide performance experiments showing how the OISA speeds up a variety of existing data oblivious codes (including ``constant time'' cryptography and memory oblivious data structures), in addition to improving their security and portability.

View More Papers

Measurement and Analysis of Hajime, a Peer-to-peer IoT Botnet

Stephen Herwig (University of Maryland), Katura Harvey (University of Maryland, Max Planck Institute for Software Systems (MPI-SWS)), George Hughey (University of Maryland), Richard Roberts (University of Maryland, Max Planck Institute for Software Systems (MPI-SWS)), Dave Levin (University of Maryland)

Read More

Analyzing Semantic Correctness with Symbolic Execution: A Case Study...

Sze Yiu Chau (Purdue University), Moosa Yahyazadeh (The University of Iowa), Omar Chowdhury (The University of Iowa), Aniket Kate (Purdue University), Ninghui Li (Purdue University)

Read More

Time Does Not Heal All Wounds: A Longitudinal Analysis...

Meng Luo (Stony Brook University), Pierre Laperdrix (Stony Brook University), Nima Honarmand (Stony Brook University), Nick Nikiforakis (Stony Brook University)

Read More

Cracking the Wall of Confinement: Understanding and Analyzing Malicious...

Eihal Alowaisheq (Indiana University, King Saud University), Peng Wang (Indiana University), Sumayah Alrwais (King Saud University), Xiaojing Liao (Indiana University), XiaoFeng Wang (Indiana University), Tasneem Alowaisheq (Indiana University, King Saud University), Xianghang Mi (Indiana University), Siyuan Tang (Indiana University), Baojun Liu (Tsinghua University)

Read More