Alexander Küchler (Fraunhofer AISEC), Alessandro Mantovani (EURECOM), Yufei Han (NortonLifeLock Research Group), Leyla Bilge (NortonLifeLock Research Group), Davide Balzarotti (EURECOM)

The amount of time in which a sample is executed is one of the key parameters of a malware analysis sandbox. Setting the threshold too high hinders the scalability and reduces the number of samples that can be analyzed in a day; too low and the samples may not have the time to show their malicious behavior, thus reducing the amount and quality of the collected data. Therefore, an analyst needs to find the ‘sweet spot’ that allows to collect only the minimum amount of information required to properly classify each sample. Anything more is wasting resources, anything less is jeopardizing the experiments.

Despite its importance, there are no clear guidelines on how to choose this parameter, nor experiments that can help companies to assess the pros and cons of a choice over another. To fill this gap, in this paper we provide the first large-scale study of the impact that the execution time has on both the amount and the quality of the collected events. We measure the evolution of system calls and code coverage, to draw a precise picture of the fraction of runtime behavior we can expect to observe in a sandbox. Finally, we implemented a machine learning based malware detection method, and applied it to the data collected in different time windows, to also report on the relevance of the events observed at different points in time.

Our results show that most samples run for either less than two minutes or for more than ten. However, most of the behavior (and 98% of the executed basic blocks) are observed during the first two minutes of execution, which is also the time windows that result in a higher accuracy of our ML classifier. We believe this information can help future researchers and industrial sandboxes to better tune their analysis systems.

View More Papers

Bringing Balance to the Force: Dynamic Analysis of the...

Abdallah Dawoud (CISPA Helmholtz Center for Information Security), Sven Bugiel (CISPA Helmholtz Center for Information Security)

Read More

IoTSafe: Enforcing Safety and Security Policy with Real IoT...

Wenbo Ding (Clemson University), Hongxin Hu (University at Buffalo), Long Cheng (Clemson University)

Read More

V2X Security: Status and Open Challenges

Jonathan Petit (Director Of Engineering at Qualcomm Technologies) Dr. Jonathan Petit is Director of Engineering at Qualcomm Technologies, Inc., where he leads research in security of connected and automated vehicles (CAV). His team works on designing security solutions, but also develops tools for automotive penetration testing and builds prototypes. His recent work on misbehavior protection…

Read More

Impact Evaluation of Falsified Data Attacks on Connected Vehicle...

Shihong Huang (University of Michigan, Ann Arbor), Yiheng Feng (Purdue University), Wai Wong (University of Michigan, Ann Arbor), Qi Alfred Chen (UC Irvine), Z. Morley Mao and Henry X. Liu (University of Michigan, Ann Arbor) Best Paper Award Runner-up ($200 cash prize)!

Read More