Alexander Küchler (Fraunhofer AISEC), Alessandro Mantovani (EURECOM), Yufei Han (NortonLifeLock Research Group), Leyla Bilge (NortonLifeLock Research Group), Davide Balzarotti (EURECOM)

The amount of time in which a sample is executed is one of the key parameters of a malware analysis sandbox. Setting the threshold too high hinders the scalability and reduces the number of samples that can be analyzed in a day; too low and the samples may not have the time to show their malicious behavior, thus reducing the amount and quality of the collected data. Therefore, an analyst needs to find the ‘sweet spot’ that allows to collect only the minimum amount of information required to properly classify each sample. Anything more is wasting resources, anything less is jeopardizing the experiments.

Despite its importance, there are no clear guidelines on how to choose this parameter, nor experiments that can help companies to assess the pros and cons of a choice over another. To fill this gap, in this paper we provide the first large-scale study of the impact that the execution time has on both the amount and the quality of the collected events. We measure the evolution of system calls and code coverage, to draw a precise picture of the fraction of runtime behavior we can expect to observe in a sandbox. Finally, we implemented a machine learning based malware detection method, and applied it to the data collected in different time windows, to also report on the relevance of the events observed at different points in time.

Our results show that most samples run for either less than two minutes or for more than ten. However, most of the behavior (and 98% of the executed basic blocks) are observed during the first two minutes of execution, which is also the time windows that result in a higher accuracy of our ML classifier. We believe this information can help future researchers and industrial sandboxes to better tune their analysis systems.

View More Papers

Securing CAN Traffic on J1939 Networks

Jeremy Daily, David Nnaji, and Ben Ettlinger (Colorado State University)

Read More

(Short) Object Removal Attacks on LiDAR-based 3D Object Detectors

Zhongyuan Hau, Kenneth Co, Soteris Demetriou, and Emil Lupu (Imperial College London) Best Short Paper Award Runner-up!

Read More

Sn4ke: Practical Mutation Analysis of Tests at Binary Level

Mohsen Ahmadi (Arizona State University), Pantea Kiaei (Worcester Polytechnic Institute), Navid Emamdoost (University of Minnesota)

Read More

PGFUZZ: Policy-Guided Fuzzing for Robotic Vehicles

Hyungsub Kim (Purdue University), Muslum Ozgur Ozmen (Purdue University), Antonio Bianchi (Purdue University), Z. Berkay Celik (Purdue University), Dongyan Xu (Purdue University)

Read More