Yan Long (University of Michigan), Qinhong Jiang (Zhejiang University), Chen Yan (Zhejiang University), Tobias Alam (University of Michigan), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University), Kevin Fu (Northeastern University)

IoT devices and other embedded systems are increasingly equipped with cameras that can sense critical information in private spaces. The data security of these cameras, however, has hardly been scrutinized from the hardware design perspective. Our paper presents the first attempt to analyze the attack surface of physical-channel eavesdropping on embedded cameras. We characterize EM Eye--a vulnerability in the digital image data transmission interface that allows adversaries to reconstruct high-quality image streams from the cameras' unintentional electromagnetic emissions, even from over 2 meters away in many cases. Our evaluations of 4 popular IoT camera development platforms and 12 commercial off-the-shelf devices with cameras show that EM Eye poses threats to a wide range of devices, from smartphones to dash cams and home security cameras. By exploiting this vulnerability, adversaries may be able to visually spy on private activities in an enclosed room from the other side of a wall. We provide root cause analysis and modeling that enable system defenders to identify and simulate mitigation against this vulnerability, such as improving embedded cameras' data transmission protocols with minimum costs. We further discuss EM Eye's relationship with known computer display eavesdropping attacks to reveal the gaps that need to be addressed to protect the data confidentiality of sensing systems.

View More Papers

Secure Multiparty Computation of Threshold Signatures Made More Efficient

Harry W. H. Wong (The Chinese University of Hong Kong), Jack P. K. Ma (The Chinese University of Hong Kong), Sherman S. M. Chow (The Chinese University of Hong Kong)

Read More

AnonPSI: An Anonymity Assessment Framework for PSI

Bo Jiang (TikTok Inc.), Jian Du (TikTok Inc.), Qiang Yan (TikTok Inc.)

Read More

WIP: A Trust Assessment Method for In-Vehicular Networks using...

Artur Hermann, Natasa Trkulja (Ulm University - Institute of Distributed Systems), Anderson Ramon Ferraz de Lucena, Alexander Kiening (DENSO AUTOMOTIVE Deutschland GmbH), Ana Petrovska (Huawei Technologies), Frank Kargl (Ulm University - Institute of Distributed Systems)

Read More

Exploring Phishing Threats through QR Codes in Naturalistic Settings

Filipo Sharevski (DePaul University), Mattia Mossano, Maxime Fabian Veit, Gunther Schiefer, Melanie Volkamer (Karlsruhe Institute of Technology)

Read More