Ashish Hooda (University of Wisconsin-Madison), Andrey Labunets (UC San Diego), Tadayoshi Kohno (University of Washington), Earlence Fernandes (UC San Diego)

Content scanning systems employ perceptual hashing algorithms to scan user content for illegal material, such as child pornography or terrorist recruitment flyers. Perceptual hashing algorithms help determine whether two images are visually similar while preserving the privacy of the input images. Several efforts from industry and academia propose scanning on client devices such as smartphones due to the impending rollout of end-to-end encryption that will make server-side scanning difficult. These proposals have met with strong criticism because of the potential for the technology to be misused for censorship. However, the risks of this technology in the context of surveillance are not well understood. Our work informs this conversation by experimentally characterizing the potential for one type of misuse --- attackers manipulating the content scanning system to perform physical surveillance on target locations. Our contributions are threefold: (1) we offer a definition of physical surveillance in the context of client-side image scanning systems; (2) we experimentally characterize this risk and create a surveillance algorithm that achieves physical surveillance rates of more than 30% by poisoning 0.2% of the perceptual hash database; (3) we experimentally study the trade-off between the robustness of client-side image scanning systems and surveillance, showing that more robust detection of illegal material leads to an increased potential for physical surveillance in most settings.

View More Papers

A Comparative Analysis of Difficulty Between Log and Graph-Based...

Matt Jansen, Rakesh Bobba, Dave Nevin (Oregon State University)

Read More

Eavesdropping on Controller Acoustic Emanation for Keystroke Inference Attack...

Shiqing Luo (George Mason University), Anh Nguyen (George Mason University), Hafsa Farooq (Georgia State University), Kun Sun (George Mason University), Zhisheng Yan (George Mason University)

Read More

DeGPT: Optimizing Decompiler Output with LLM

Peiwei Hu (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Ruigang Liang (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Kai Chen (Institute of Information Engineering, Chinese Academy of Sciences, China)

Read More

CBAT: A Comparative Binary Analysis Tool

Chloe Fortuna (STR), JT Paasch (STR), Sam Lasser (Draper), Philip Zucker (Draper), Chris Casinghino (Jane Street), Cody Roux (AWS)

Read More