Qiao Zhang (Old Dominion University), Chunsheng Xin (Old Dominion University), Hongyi Wu (Old Dominion University)

Machine Learning as a Service (MLaaS) is enabling a wide range of smart applications on end devices. However, privacy still remains a fundamental challenge. The schemes that exploit Homomorphic Encryption (HE)-based linear computations and Garbled Circuit (GC)-based nonlinear computations have demonstrated superior performance to enable privacy-preserved MLaaS. Nevertheless, there is still a significant gap in the computation speed. Our investigation has found that the HE-based linear computation dominates the total computation time for state-of-the-art deep neural networks. Furthermore, the most time-consuming component of the HE-based linear computation is a series of Permutation (Perm) operations that are imperative for dot product and convolution in privacy-preserved MLaaS. This work focuses on a deep optimization of the HE-based linear computations to minimize the Perm operations, thus substantially reducing the overall computation time. To this end, we propose GALA: Greedy computAtion for Linear Algebra in privacy-preserved neural networks, which views the HE-based linear computation as a series of Homomorphic Add, Mult and Perm operations and chooses the least expensive operation in each linear computation step to reduce the overall cost. GALA makes the following contributions: (1) It introduces a row-wise weight matrix encoding and combines the share generation that is needed for the GC-based nonlinear computation, to reduce the Perm operations for the dot product; (2) It designs a firstAdd-second-Perm approach (named kernel grouping) to reduce Perm operations for convolution. As such, GALA efficiently reduces the cost for the HE-based linear computation, which is a critical building block in almost all of the recent frameworks for privacy-preserved neural networks, including GAZELLE (Usenix Security’18), DELPHI (Usenix Security’20), and CrypTFlow2 (CCS’20). With its deep optimization of the HE-based linear computation, GALA can be a plug-and-play module integrated into these systems to further boost their efficiency. Our experiments show that it achieves a significant speedup up to 700× for the dot product and 14× for the convolution computation under different data dimensions. Meanwhile, GALA demonstrates an encouraging runtime boost by 2.5×, 2.7×, 3.2×, 8.3×, 7.7×, and 7.5× over GAZELLE and 6.5×, 6×, 5.7×, 4.5×, 4.2×, and 4.1× over CrypTFlow2, on AlexNet, VGG, ResNet-18, ResNet-50, ResNet-101, and ResNet-152, respectively.

View More Papers

Bitcontracts: Supporting Smart Contracts in Legacy Blockchains

Karl Wüst (ETH Zurich), Loris Diana (ETH Zurich), Kari Kostiainen (ETH Zurich), Ghassan Karame (NEC Labs), Sinisa Matetic (ETH Zurich), Srdjan Capkun (ETH Zurich)

Read More

(Short) Spoofing Mobileye 630’s Video Camera Using a Projector

Ben Nassi, Dudi Nassi, Raz Ben Netanel and Yuval Elovici (Ben-Gurion University of the Negev)

Read More

Data Poisoning Attacks to Deep Learning Based Recommender Systems

Hai Huang (Tsinghua University), Jiaming Mu (Tsinghua University), Neil Zhenqiang Gong (Duke University), Qi Li (Tsinghua University), Bin Liu (West Virginia University), Mingwei Xu (Tsinghua University)

Read More

Comparative Analysis of the DoT with HTTPS Certificate Ecosystems

Ali Sadeghi Jahromi, AbdelRahman Abdou (Carleton University)

Read More