Peng Wang (Indiana University Bloomington), Xiaojing Liao (Indiana University Bloomington), Yue Qin (Indiana University Bloomington), XiaoFeng Wang (Indiana University Bloomington)

E-commerce miscreants heavily rely on instant messaging (IM) to promote their illicit businesses and coordinate their operations. The threat intelligence provided by IM communication, therefore, becomes invaluable for understanding and mitigating the threats of e-commerce frauds. However, such information is hard to get since it is usually shared only through one-on-one conversations with the criminals. In this paper, we present the first chatbot, called Aubrey, to actively collect such intelligence through autonomous chats with real-world e-commerce miscreants. Our approach leverages the question-driven conversation pattern of small-time workers, who seek from e-commerce fraudsters jobs and/or attack resources, to model the interaction process as a finite state machine, thereby enabling an autonomous conversation. Aubrey successfully chatted with 470 real-world e-commerce miscreants and gathered a large amount of fraud-related artifact, including 40 SIM gateways, 323K fraud phone numbers, and previously-unknown attack toolkits, etc. Further, the conversations reveal the supply chain of e-commerce fraudulent activities on the deep web and the complicated relations (e.g., complicity and reselling) among miscreant roles.

View More Papers

SymTCP: Eluding Stateful Deep Packet Inspection with Automated Discrepancy...

Zhongjie Wang (University of California, Riverside), Shitong Zhu (University of California, Riverside), Yue Cao (University of California, Riverside), Zhiyun Qian (University of California, Riverside), Chengyu Song (University of California, Riverside), Srikanth V. Krishnamurthy (University of California, Riverside), Kevin S. Chan (U.S. Army Research Lab), Tracy D. Braun (U.S. Army Research Lab)

Read More

Hold the Door! Fingerprinting Your Car Key to Prevent...

Kyungho Joo (Korea University), Wonsuk Choi (Korea University), Dong Hoon Lee (Korea University)

Read More

PhantomCache: Obfuscating Cache Conflicts with Localized Randomization

Qinhan Tan (Zhejiang University), Zhihua Zeng (Zhejiang University), Kai Bu (Zhejiang University), Kui Ren (Zhejiang University)

Read More

Adversarial Classification Under Differential Privacy

Jairo Giraldo (University of Utah), Alvaro Cardenas (UC Santa Cruz), Murat Kantarcioglu (UT Dallas), Jonathan Katz (George Mason University)

Read More